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PEOLOGUE. 

Considering how many fools can calculate, it is 

surprising that it should be thought either a difficult 

or a tedious task for any other fool to learn how to 

master the same tricks. 

Some calculus-tricks are quite easy. Some are 

enormously difficult. The fools who write the text¬ 

books of advanced mathematics-—and they are mostly 

clever fools seldom take the trouble to show you how 

easy the easy calculations are. On the contrary, they 

seem to desire to impress you with their tremendous 

cleverness by going about it in the most difficult way. 

Being myself a remarkably stupid fellow, I have 

had to unteach myself the difficulties, and now beg 

to present to my fellow fools the parts that are not 

hard. Master these thoroughly, and the rest will 

follow. What one fool can do, another can. 





CHAPTER I. 

TO DELIYEE YOU FEOM THE PEELIMINAEY 

TEEEOES. 

The preliminary terror, which chokes off most fifth- 

form hoys from even attempting to learn how to 

calculate, can be abolished once for all by simply stating 

what is the meaning—in common-sense terms—of the 

two principal symbols that are used in calculating. 

These dreadful symbols are: 

(1) d which merely means “ a little bit of.” 

Thus dx means a little bit of x\ or du means a 

little bit of u. Ordinary mathematicians think it 

more polite to say “ an element of,” instead of “ a little 

bit of.” Just as you please. But you will find that 

these little bits (or elements) may be considered to be 

indefinitely small. 

(2) J which is merely a long 8, and may be called 

(if you like) “ the sum of.” 

Thus ^dx means the sum of all the little bits 

of X', or ^dt means the sum of all the little bits 

of t. Ordinary mathematicians call this symbol “ the 
C.M.B. A 
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integral of.” Now any fool can see that if x is 

considered as made up of a lot of little bits, each of 

which is called dx, if you add them all up together 

you get the sum of all the dx's, (which is the same 

thing as the whole of x). The word “ integral ” simply 

means “the whole.” If you think of the duration 

of time for one hour, you may (if you like) think of 

it as cut up into 3600 little bits called seconds. The 

whole of the 3600 little bits added up together make 

one hour. 

When you see an expression that begins with this 

terrifying symbol, you will henceforth know that it 

is put there merely to give you instructions that you 

are now to perform the operation (if you can) of 

totalling up all the little bits that are indicated by 

the symbols that follow. 

That’s all. 



CHAPTEE II. 

ON DIFFERENT DEGREES OF SMALLNESS. 

We shall find that in our processes of calculation we 

have to deal with small quantities of various degrees 
of smallness. 

We shall have also to learn under what circumstances 

we may consider small quantities to be so minute 

that we may omit them from consideration. Every¬ 

thing depends upon relative minuteness. 

Before we fix any rules let us think of some 

familiar cases. There are 60 minutes in the hour, 

24 hours in the day, 7 days in the week. There are 

therefore 1440 minutes in the day and 10080 minutes 
in the week. 

Obviously 1 minute is a very small quantity of 

time compared with a whole week. Indeed, our 

forefathers considered it small as compared with an 

hour, and called it “one minute,” meaning a minute 

fraction—namely one sixtieth—of an hour. When 

they came to require still smaller subdivisions of time, 

they divided each minute into 60 still smaller parts, 

which, in Queen Elizabeth’s days, they called “ second 

minutes ” (i.e. small quantities of the second order of 

minuteness). Nowadays we call these small quantities 



4 CALCULUS MADE EASY 

of the second order of smallness “ seconds.” But few 

people know why they are so called. 

Now if one minute is so small as compared with a 

whole day, how much smaller by comparison is one 

second! 

Again, think of a farthing as compared with a 

sovereign; it is barely worth more than yttW 

A farthing more or less is of precious little importance 

compared with a sovereign: it may certainly be re¬ 

garded as a small quantity. But compare a farthing 

with £1000: relatively to this greater sum, the 

farthing is of no more importance than yoVf of a 

farthing would be to a sovereign. Even a golden 

sovereign is relatively a negligible quantity in the 

wealth of a millionaire. 

Now if we fix upon any numerical fraction as 

constituting the proportion which for any purpose 

we call relatively small, we can easily state other 

fractions of a higher degree of smallness. Thus if, 

for the purpose of time, be called a small fraction, 

then of Ar (being a small fraction of a small 

fraction) may be regarded as a small quantity of the 

second order of smallness.* 

Or, if for any purpose we were to take 1 per cent. 

(i.e. Y^-o) ^ small fraction, then 1 per cent, of 

1 per cent. (i.e. y^jt^To) 'would be a small fraction 

of the second order of smallness ; and i.ooq.oqo "would 

* The mathematicians talk about the second order of “magnitude ” 
{i.e. greatness) when they really mean second order of smallness. 
This is very confusing to beginners. 
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be a small fraction of the third order of smallness, 

being 1 per cent, of 1 per cent, of 1 per cent. 

Lastly, suppose that for some very precise purpose 

we should regard as “small.” Thus, if a 

first-rate chronometer is not to lose or gain more than 

half a minute in a year, it must keep time with an 

accuracy of 1 part in 1,051,200. Now if, for such a 

purpose, we regard (or one millionth) as a 

small quantity, then - of -^_ that 

1.000.000,000,000 one billionth) will be a small 
quantity of the second order of smallness, and may 

be utterly disregarded, by comparison. 

Then we see that the smaller' a small quantity itself 

is, the more negligible does the corresponding small 

quantity of the second order become. Hence we 

know that in all cases we are justified in neglecting 

the small quantities of the second—or third (or 

higher)—orders, if only we take the small quantity 

of the first order small enough in itself. 

But, it must be remembered, that small quantities 

if they occur in our expressions as factors multiplied 

by some other factor, may become important if the 

other factor is itself large. Even a farthing becomes 

important if only it is multiplied by a few hundred. 

Now in the calculus we write dx for a little bit 

of X. These things such as dx, and du, and dy, are 

called “differentials,” the differential of x, or of u, 

or of y, as the case may be. [You read them as 

dee-eks, or dee-you, or dee-wy.'\ If dx be a small bit 

of X, and relatively small of itself, it does not follow 
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that such quantities as x • dx, or x^dx, or a^dx are 

negligible. But dx X dx would be negligible, being a 

small quantity of the second order. 

A very simple example will serve as illustration. 

Let us think of a? as a quantity that can grow by 

a small amount so as to become x + dx, where dx is 

the small increment added by growth. The square 

of this is x‘^ + ^x-dx+{dxf. The second term is 

not negligible because it is a first-order quantity, 

while the third term is of the second order of small¬ 

ness, being a bit of, a bit of x\ Thus if we took 

dx to mean numerically, say, iben the second 

term would be of x^, whereas the third term would 

be of x^. This last term is clearly less important 

than the second. But if we go further and take 

dx to mean only of x, then the second term 

will be of while the third term will be 

only --——r of x^-. 
^ 1,000*000 

X- 

X 

Fig. 1. 

Geometrically this may be depicted as follows: 

Draw a square (Fig. 1) the side of which we will 

take to represent x. Now suppose the square to 

grow by having a bit dx added to its size each 
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way. The enlarged square is made up of the original 

square the two rectangles at the top and on the 

right, each of which is of area x • dx (or together 

2a? • dx), and the little square at the top right-hand 

corner which is (dx)^. In Fig. 2 we have taken dx as 

X dx 

Fig. 2. Fig. 3. 

quite a big fraction of x—about But suppose we 

had taken it only —about the thickness of an 

inked line drawn with a fine pen. Then the little 

corner square will have an area of only of a?®, 

and be practically invisible. Clearly (dx)^ is negligible 

if only we consider the increment dx to be itself 

small enough. 

Let us consider a simile. 

Suppose a millionaire were to say to his secretary: 

next week I will give you a small fraction of any 

money that comes in to me. Suppose that the 

secretary were to say to his boy: I will give you a 

small fraction of what I get. Suppose the fraction 

in each case to be part. Now if Mr. Millionaire 

received during the next week £1000, the secretary 
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would receive £10 and the boy 2 shillings. Ten 

pounds would be a small quantity compared with 

£1000 ; but two shillings is a small small quantity 

indeed, of a very secondary order. But what would 

be the disproportion if the fraction, instead of being 

had been settled at x'oV'ff part ? Then, while 

Mr. Millionaire got his £1000, Mr. Secretary would 

get only £1, and the boy less than one farthing! 

The witty Dean Swift * once wrote ; 

“ So, Nat’ralists observe, a Flea 

“ Hath smaller Fleas that on him prey. 

“ And these have smaller Fleas to bite 'em, 

“And so pi’oceed ad infimitwm.” 

An ox might worry about a flea of ordinary 

size—a small creature of the first order of smallness. 

But he would probably not trouble himself about a 

flea’s flea; being of the second order of smallness, it 

would be negligible. Even a gross of fleas’ fleas 

would not be of much account to the ox. 

■* On Poetry: a Rhapsody (p. 20), printed 1733—usually misquoted. 



CHAPTEE III. 

ON RELATIVE GROWINGS. 

All through the calculus we are dealing with quan¬ 

tities that are growing, and with rates of growth. 

We classify all quantities into two classes: constants 

and variables. Those which we regard as of fixed 

value, and call constants, we generally denote alge¬ 

braically by letters from the beginning of the 

alphabet, such as a, h, or c; while those which we 

consider as capable of growing, or (as mathematicians 

say) of “ varying,” we denote by letters from the end 

of the alphabet, such as x, y, z, u, v, w, or sometimes t. 

Moreover, we are usually dealing with more than 

one variable at once, and thinking of the way in 

which one variable depends on the other: for instance, 

we think of the way in which the height reached 

by a projectile depends on the time of attaining that 

height. Or we are asked to consider a rectangle of 

given area, and to enquire how any increase in the 

length of it will compel a corresponding decrease in 

the breadth of it. Or we think of the way in which 

any variation in the slope of a ladder will cause the 

height that it reaches, to vary. 

Suppose we have got two such variables that 
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depend one on the other. An alteration in one will 

bring about an alteration in the other, because of this 

dependence. Let us call one of the variables x, and 

the other that depends on it y. 

Suppose we make x to vary, that is to say, we 

either alter it or imagine it to be altered, by adding 

to it a bit which we call dx. We are thus causing x 

to become x + dx. Then, because x has been altered, 

y will have altered also, and will have become y + dy. 

Here the bit dy may be in some cases positive, in 

others negative; and it won’t (except by a miracle) be 

the same size as dx. 

Take two examples. 

(1) Let X and y be respectively the base and the 

height of a right-angled triangle (Fig. 4), of which 

Fig. 4. 

the slope of the other side is fixed at 30°. If we 

suppose this triangle to expand and yet keep its 

angles the same as at first, then, when the base grows 

so as to become x + dx, the height becomes y + dy. 

Here, increasing x results in an increase of y. The 

little triangle, the height of which is dy, and the base 
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of which is dx, is similar to the original triangle; and 

it is obvious that the value of the ratio ^ is the 
dx 

same as that of the ratio As the angle is 30° it 
/y» ~ 

will be seen that here 

dy _ 1 

dx l'l^' 

(2) Let a? represent, in Fig. 5, the horizontal dis¬ 

tance, from a wall, of the bottom end of a ladder, 

B 

AB, of fixed length; and let y be the height it 

reaches up the wall. Now y clearly depends on x. 

It is easy to see that, if we pull the bottom end A a 

bit further from the wall, the top end B will come 

down a little lower. Let us state this in scientific 

language. If we increase x to x + dx, then y will 

become y — dy, that is, when x receives a positive 
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increment, the increment which results to y is 

negative. 

Yes, but how much? Suppose the ladder was so 

long that when the bottom end A was 19 inches from 

the wall the top end B reached just 15 feet from the 

ground. Now, if you were to pull the bottom end 

out 1 inch more, how much would the top end come 

down? Put it all into inches: a? =19 inches, y= 180 

inches. Now the increment of x which we call dx, 

is 1 inch: ov x + dx = 20 inches. 

How much will y be diminished ? The new height 

will be y — dy. If we work out the height by Euclid 

I. 47, then we shall be able to find how much dy will 

be. The length of the ladder is 

x/(180)2 +(19)2 =181 inches. 

Clearly then, the new height, which is y — dy, will be 

such that 

{y - dyf = (181 )2 - (20)^ = 32761 - 400 = 32361, 

y —<^y = <y32361 = 179’89 inches. 

Now y is 180, so that dy is 180—179'89 = 0T1 inch. 

So we see that making dx an increase of 1 inch 

has resulted in making dy a decrease of OTl inch. 

And the ratio of dy to dx may be stated thus: 

dy _ OTl 

dx 1 

It is also easy to see that (except in one particular 

position) dy will be of a different size from dx. 

Now right through the differential calculus we 

are hunting, hunting, hunting for a curious thing. 
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a mere ratio, namely, the proportion which dy 

bears to dx when both of them are indefinitely 

small. 

It should be noted here that we can only find 
/Iqi 

this ratio when y and x are related to each 

other in some way, so that whenever x varies y does 

vary also. For instance, in the first example just 

taken, if the base x of the triangle be made longer, 

the height y of the triangle becomes greater also, 

and in the second example, if the distance x of the 

foot of the ladder from the wall be made to increase, 

the height y reached by the ladder decreases in a 

corresponding manner, slowly at first, but more and 

more rapidly as x becomes greater. In these cases 

the relation between x and y is perfectly definite. 

it can be expressed mathematically, being ^ = tan 30° 

and x^-\-y'^ = P (where I is the length of the ladder) 

m respectively, and has the meaning we found i 
1 (ajQu 

each case. 

If, while X is, as before, the distance of the foot 

of the ladder from the wall, y is, instead of the 

height reached, the horizontal length of the wall, or 

the number of bricks in it, or the number of years 

since it was built, any change in x would naturally 

cause no change whatever in in this case 
dx 

has 

no meaning whatever, and it is not possible to find 
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an expression for it. Whenever we use differentials 
dx, dy, dz, etc., the existence of some kind of 
relation between x, y, z, etc., is implied, and this 

relation is called a “ function ” in x, y, z, etc.; the 
two expressions given above, for instance,, namely 

•^_ = tan30° and x^-\-y‘^ = P, are functions of x and y. 

Such expressions contain implicitly (that is, contain 
without distinctly showing it) the means of expressing 
either x in terms oi y or y in terms of x, and for 
this reason they are called functions in 
X and y; they can be respectively put into the forms 

?/ = a?tan30° or a? = 7— 
tan 30 

and y=JV‘—x‘‘ or x= JV^ — y"^. 

These last expressions state explicitly (that is, dis¬ 
tinctly) the value of x in terms of y, or of y in terms 
of X, and they are for this reason called exflicit 

functions of x or y. For example x^+S = ^y—7 is 
an implicit function in x and y; it may be written 

^2 _|_ Q _ 
y = —2— (explicit function of x) or a; = v2i/ —10 

(explicit function of y). We see that an explicit 
function in x, y, z, etc., is simply something the 

value of which changes when x, y, z, etc., are 
changing, either one at the time or several together. 
Because of this, the value of the explicit function is 
called the dependent variable, as it depends on the 
value of the other variable quantities in the function; 
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these other variables are called the independent 

variables because their value is not determined from 

the Aalue assumed by the function. For example, 

if u = x^sind, X and Q are the independent variables, 

and u is the dependent variable. 

Sometimes the exact relation between several 

quantities x, y, z either is not known or it is not 

convenient to state it; it is only known, or con¬ 

venient to state, that there is some sort of relation 

between these variables, so that one cannot alter 

either x or y or z singly without affecting the other 

quantities; the existence of a function in x, y, z is 

then indicated by the notation F{x, y, z) (implicit 

function) or by x = F{y, z), y = F{x, z) or z = F{x, y) 

(explicit function). Sometimes the letter y or ^ is used 

instead of F, so that y=F{x), y=f{x) and y—^tix) 

all mean the same thing, namely, that the value of 

y depends on the value of x in some way which is 

not stated. 

We call the ratio “ the differential coefficient of 

y with respect to x!’ It is a solemn scientific name 

for this very simple thing. But we are not going 

to be frightened by solemn names, when the things 

themselves are so easy. Instead of being frightened 

we Avill simply pronounce a brief curse on the 

stupidity of giving long crack-jaw names; and, having 

relieved our minds, will go on to the simple thing 

iHn 
itself, namely the ratio 

•’ ax 
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In ordinary algebra which you learned at school, 

you were always hunting after some unknown 

quantity which you called x or y\ or sometimes 

there were two unknown quantities to be hunted 

for simultaneously. You have now to learn to go 

hunting in a new way; the fox being now neither 

X nor y. Instead of this you have to hunt for this 

curious cub called The process of finding the 
, ax ^ ^ 

value of is called “differentiating.” But, remember. 

what is wanted is the value of this ratio when both 

dy and dx are themselves indefinitely small. The 

true value of the differential coefficient is that to which 

it approximates in the limiting case when each of 

them is considered as infinitesimally minute. 

Let us now learn how to go in quest of 
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NOTE TO CHAPTER III. 

How to read Differentials. 

It will never do to fall into the schoolboy error of 

thinking that dx means d times x, for d is not a 

factor—it means “an element of” or “a bit of” 

whatever follows. One reads dx thus: “ dee-eks.” 

In case the reader has no one to guide him in such 

matters it may here be simply said that one reads 

differential coefficients in the following way. The 

differential coefficient 

^ is read “ dee-wy hy dee-eks,” or “ dee-wy over 

dee-eks." 

So also ^ is read “ dee-you hy dee-tee.” 

Second differential coefficients will be met with 

later on. They are like this: 

; which is read “ dee-two-wy over dee-eks-squared,” 

and it means that the operation of differentiating y 

with respect to x has been (or has to be) performed 

twice over. 

Another way of indicating that a function has been 

differentiated is by putting an accent to the symbol of 

the function. Thus if y = F{x), which means that y 

is sojne unspecified function of x (see p. 14), we may 

write F'(x) instead of —\ Similarly, F''{x) 

will mean that the original function F{x) has been 

differentiated twice over with respect to x. 

B O.M.E. 



CHAPTER IV. 

SIMPLEST CASES. 

Now let us see how, on first principles, we can 

differentiate some simple algebraical expression. 

Case 1. 

Let us begin with the simple expression y = x^. 

Now remember that the fundamental notion about 

the calculus is the idea of growing. Mathematicians 

call it vary%ng. Now as y and are equal to one 

another, it is clear that if x grows, x^ will also grow. 

And if x‘^ grows, then y will also grow. What we 

have got to find out is the proportion between the 

growing of y and the growing of x. In other words 

our task is to find out the ratio between dy and dx. 

or, in brief, to find the value of 
dx 

Let X, then, grow a little bit bigger and become 

x-\-dx\ similarly, y will grow a bit bigger and will 

become y + dy. Then, clearly, it will still be true 

that the enlarged y will be equal to the square of the 

enlarged x. Writing this down, we have: 

y-\-dy = {x+dx)\ 

Doing the squaring we get: 

y+dy = x^-\-2x'dx+{dx)\ 
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What does (dx)^ mean ? Remember that dx meant 

a bit—a little bit—of x. Then {dx)^ will mean a little 

bit of a little bit of x] that is, as explained above 

(p. 4), it is a small quantity of the second order 

of smallness. It may therefore be discarded as quite 

inconsiderable in comparison with the other terms. 

Leaving it out, we then have: 

y+dy = x^ -fr 2x - dx. ’ 

Now y = x^\ so let us subtract this from the equa¬ 

tion and we have left 

dy==2x- dx. 

Dividing across by dx, we find 

dx 
= 2x. 

Now this* is what we set out to find. The ratio of 

the growing of y to the growing of x is, in the case 

before us, found to be 2aj. 

* N.B.—This ratio ^ is the result of differentiating y with 

respect to x. Differentiating means finding the differential co¬ 

efficient. Suppose we had some other function of x, as, for 

example, u=7afi + 3. Then if we were told to differentiate this 

with respect to x, we should have to find or, what is the same 

thing, ' ■ Ou the other hand, we may have a ease in which 

time was the independent variable (see p. 15), such as this ; 

y—b + ^at^. Then, if we were told to differentiate it, that means we 

must find its differential coefficient with respect to t. So that then 

our business would be to try to find that is, to find - 
dt dt 
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Numerical example. 

Suppose « = 100 and y = 10,000. Then let x grow 

till it becomes 101 (that is, let dx = l). Then the 

enlarged y will be 101 x 101 = 10,201. But if we agree 

that we may ignore small quantities of the second 

order, 1 may be rejected as compared with 10,000; so 

we may round off the enlarged y to 10,200. y has 

grown from 10,000 to 10,200; the bit added on is dy, 

which is therefore 200. 

^ = ^^ = 200. According to the algebra-working 

of the previous paragraph, we find ~ = 2x. And so 

it is; for it? = 100 and 2;u = 200. ^ 

But, you will say, we neglected a whole unit. 

Well, try again, making dx a still smaller bit. 

dx — -^. Then ii?-|-(^a?=100T, and 

{x+dxf=10<d-\ X100-1 = 10,020-01. 

Now the last figure 1 is only one-millionth part of 

the 10,000, and is utterly negligible; so we may 

take 10,020 without the little decimal at the end. 

And this makes dy = 2Q-, and ^ = ^ = 200, which 

is still the same as 2a?. * 

Case 2. 

Try differentiating ^ = a?® in the same way. 

We let y grow to y+dy, while x grows to x + dx. 

Then we have 

y+dy = {x+dxf. 
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Doing the cubing we obtain 

y+dy = x^+• dx+Zxidxf+{dxf. 

Now we know that we may neglect small quantities 

of the second and third orders ; since, when dy and dx 

are both made indefinitely small, {dx^ and {dx)^ 

will become indefinitely smaller by comparison. So, 

regarding them as negligible, we have left: 

y+dy=o(? • dx. 

But y = x?-, and, subtracting this, we have: 

dy = %x^ • dx, 

and ^ = Zx\ 

Case 3. 

Try differentiating y = x*‘. Starting as before by 

letting both y and x grow a bit, we have: 

y->rdy = {x-\-dxy. 

Working out the raising to the fourth power, we get 

y+dy = x*‘+^x^dx+6a?^( +4!x{dxy’+{dxy. 

Then striking out the terms containing all the 

higher powers of dx, as being negligible by com¬ 

parison, we have 

y-\-dy = x‘^-\- 410? dx. 

Subtracting the original y = od^, we have left 

dy = 4xMx, 

dy 
dx 

= 4a;®. and 
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Now all these cases are quite easy. Let us collect 

the results to see if we can infer any general rule. 

Put them in two columns, the values of y in one 

and the corresponding values found for 

other: thus 

% 
dx 

the 

y dx 

x^ 2x 
x? Sx^ 
x'^ 4a;3 

Just look at these results: the operation of differen¬ 

tiating appears to have had the effect of diminishing 

the power of a? by 1 (for example in the last case 

reducing to a?), and at the same time multiplying 

by a number (the same number in fact which originally 

appeared as the power). Now, when you have once 

seen this, you might easily conjecture how the others 

will run. You would expect that differentiating of 
would give 6a?^, or differentiating a?® would give 6a:®. 

If you hesitate, try one of these, and see whether 

the conjecture comes right. 

Try y = a3®. 

Then y + d'y={x->rdxY 
=a?® H- hx^dx+l^x^idx'f -1- V^aP’idx'f 

-P 'bx{dxy‘ -P {dxf. 
Neglecting all the terms containing small quantities 

of the higher orders, we have left 

y+dy = a5®+5afdx, 
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and subtracting y = x^ leaves us 

dy = ?>x*‘dx, 

whence ^ = 5x‘^, exactly as we supposed. 

Following out logically our observation, we should 

conclude that if we want to deal with any higher 

power,—call it n—we could tackle it in the same 

way. 

Let y = x‘^, 

then, we should expect to find that 

dx 

For example, let n = 8, then y = x^\ and differ- 
(1 'ij 

entiating it would give = 8®^. 
^ ^ dx 

And, indeed, the rule that differentiating a?" gives as 

the result nx^"'^ is true for all cases where n is a 

whole number and positive. [Expanding {x + dx^ by 

the binomial theorem will at once show this.] But 

the question whether it is true for cases where n 

has negative or fractional values requires further 

consideration. 

Case of a negative power. 

Let 2/= 03"^. Then proceed as before; 

y+dy = {x+dxY‘‘‘ 

dx\-^ 
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Expanding this by the binomial theorem (see p. 141), 
we get 

L X 1x2 v'aT/ 

= x-^-2x-^-dx + Sx-\dxY - 4x - %dx)’<+etc. 

So, neglecting the small (Quantities of higher orders 
of smallness, we have: 

y+dy=x-^—2x-^-dx. 

Subtracting the original y = x~‘^,w& find 

dy= —2x-^dx, 

And this is still in accordance with the rule inferred 
above. 

Case of a fractional power. 

Let y = x^. Then, as before, 

y + dy = {x + dx)i = x-^(l + 
N 00/ 

= s/x+ 
1 dx 

2 >J X 

1 {dxf 

8 x/JX 
+ terms with higher 

powers of dx. 

Subtracting the original y = x^, and neglecting higher 
powers we have left ; 

dy = 
1 dx 1 

2 X 2 
x~ •dx, 

dy 
dx 

Agreeing with the general rule. and 
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Summary. Let us see how far we have got. We 

have arrived at the following rule: To differentiate 

a?” multiply by the power and reduce the power by 

one, so giving us as the result. 

Exercises I. (See p. 254 for Answers.) 

Differentiate the following; 

(1) y = aP (2) y = x-i 

(3) y — x^‘^ (4) u = f'^ 

(5) z=fjw (6) y=^x~^ 

(8) ^ = 2a3®. 

(9) y = i/x^ (10) 1/ = ^^ 

You have now learned how to differentiate powers 

of X. How easy it is! >. ^ 

C- li 
n 

. I 

V- 
.\ 

/hlf 



CHAPTER V. 

NEXT STAGE. WHAT TO DO WITH CONSTANTS. 

In our equations we have regarded x as growing, 

and as a result of x being made to grow y also 

changed its value and grew. We usually think of x 

as a quantity that we can vary; and, regarding the 

variation of a? as a sort of cause, we consider the re¬ 

sulting variation of y as an effect. In other words, we 

regard the value of y as depending on that of x. Both 

X and y are variables, but x is the one that we operate 

upon, and y is the “ dependent variable.” In all the 

preceding chapter we have been trying to find out 

rules for the proportion which the dependent variation 

in y bears to the variation independently made in x. 

Our next step is to find out what eflfect on the 

process of differentiating is caused by the presence of 

constants, that is, of numbers which don’t change 

when X ov y change their values. 

Added Constants. 

Let us begin with some simple case of an added 
constant, thus : 

Let y=x^+5. 

Just as before, let us suppose x to grow to x+dx and 

y to grow to y + dy. 
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Then: y + dy = {x + dxy + ^ 

= aj® + ZxMx+3a;((^a?)®+{dxf + 6. 

Neglecting the small quantities of higher orders, this 

becomes y + dy = a(? + ^x^-dx + 5. 

Subtract the original 2/ = ®®+ 5, and we have left: 

dy = 2,x^dx. 

dx 
= 8a;^. 

So the 5 has quite disappeared. It added nothing 

to the growth of x, and does not enter into the 

differential coefficient. If we had put 7, or 700, or 

any other number, instead of 5, it would have dis¬ 

appeared. So if we take the letter a, or h, or c to 

represent any constant, it will simply disappear when 

we differentiate. 

If the additional constant had been of negative value, 

such as — 5 or — h, it would equally have disappeared. 

Multiplied Constants. 

Take as a simple experiment this case: 

Let y — *lx‘‘‘. 

Then on proceding as before we get: 

y-\-dy=^lyX-Vdx'f 
= 7 {aj® -h 2® • -h {dxy’] 

^Ix^+l^^x-dx+^lidxf. 

Then, subtracting the original y — ^la?, and neglecting 

the last term, we have 

dy=l^x-dx. 

dy 

dx 
= 14aj. 
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Let us illustrate this example by working out the 

graphs of the equations y = lx^ and ^=14a?, by 
€1/00 

assigning to a? a set of successive values, 0,1, 2, 3, etc., 

and finding the corresponding values of y and of 
dx 

These values we tabulate as follows: 

X 0 1 2 3 4 5 -1 -2 1 
V 0 7 28 63 112 175 

1 
7 28 63 

dy 

dx 
0 14 28 42 56 70 -14 -28 -42 

di/ 
y 

Now plot these values to some convenient scale, 

and we obtain the two curves. Figs. 6 and 6a. 
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Carefully compare the two figures, and verify by 

inspection that the height of the ordinate of the 

derived curve, Fig. 6a, is proportional to the slope of 

the original curve,* Fig. 6, at the corresponding value 

of X. To the left of the origin, where the original 

curve slopes negatively (that is, downward from left 

to right) the corresponding ordinates of the derived 

curve are negative. 

Now if we look hack at p. 19, we shall see that 

simply differentiating gives us 2x. So that the 

differential coefficient of *lx^ is just 7 times as big as 

that of x\ If we had taken 8x“, the differential 

coefficient would have come out eight times as great 

as that of x\ If we put y = ax\ we shall get 

^ = ax2x. 
ax 

If we had begun with y = ax^, we should have had 

^ = aXnx'^~\ So that anymore multiplication by 
ax 
a constant reappears as a mere multiplication when 

the thing is differentiated. And, what is true about 

multiplication is equally true about division; for if, 

in the example above, we had taken as the constant ^ 

instead of 7, we should have had the same + come 

out in the result after differentiation. 

* See p. 77 about slopes of curves. 
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Some Further Examples. 

The following further examples, fully worked out, 

will enable you to master completely the process of 

differentiation as applied to ordinary algebraical ex¬ 

pressions, and enable you to work out by yourself the 

examples given at the end of this chapter. 

(1) Differentiate 

o 

g is an added constant and vanishes (see p. 26). 

We may then write at once 

dy 

dx 

or dy _ 5 

dx~n^ 
4 

(2) Differentiate y = ajx — \s/a. 

The term ^Va vanishes, being an added constant; 

and as a\/x, in the index form, is written ax^, we 

dy 1 a , 

or dy a 

dx~2;s/x 

(3) If ay+hx = hy~ ax+(x+y)J<F - W, 

find the differential coefficient of y with respect to x. 

^ As a rule an expression of this kind will need a 

little more knowledge than we have acquired so far; 
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it is, however, always worth while to try whether the 

expression can be put in a simpler form. 

First we must try to bring it into the form y = some 

expression involving x only. 

The expression may be written 

{a — h)y+{a + h)x = {x+y)^a^ — V. 

Squaring, we get 

{a — bYy^ + (a + b^x^ + 2{a + b)(a—b)xy 

= {x^+y'^+'ixy){a? — W), 
which simplifies to 

(ct — &)y+(«+= a?® (a^ — +y‘^ {a^ — V); 

or {{a -hf-{a?- ¥)~\ = {{a? -¥)-{a+hf] x^, 

that is 2h{h — a)y^=—‘2b{h+a)x^-, 

, ia+b j dy la+b 
hence 

(4) The volume of a cylinder of radius r and height 

h is given by the formula V = irr^h. Find the rate of 

variation of volume with the radius when r = 5‘5 in. 

and ^ = 20 in. If r = Ji, find the dimensions of the 

cylinder so that a change of 1 in. in radius causes a 

change of 400 cub. in. in the volume. 

The rate of variation of V with regard to r is 

——=27rrft. 
dr 

If r = 5’5 in. and li = '2,0 in. this becomes 690'8. It 

means that a change of radius of 1 inch will cause a 

change of volume of 690'8 cub. inch. This can be 

easily verified, for the volumes with r = 5 and r = 6 
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are 1570 cub. in. and 2260-8 cub. in. respectively, and 

2260-8-1570 = 690-8. 

Also, if 

r = h, ^^=27rr^ = 400 and r = h= \ ^^ = 7'98 in. 
dr V 27r 

(5) The reading 0 of a Eery’s Radiation pyrometer 

is related to the Centigrade temperature t of the 

observed body by the relation 

where 0j is the reading corresponding to a known tem¬ 

perature of the observed body. 

Compare the sensitiveness of the pyrometer at 

temperatures 800° C., 1000° C., 1200° C., given that it 

read 25 when the temperature was 1000° 0. 

The sensitiveness is the rate of variation of the 

do 
reading with the temperature, that is The formula 

may be written 

and we have 

0—^fi —_ 
lOOO-^' 

de 1007* *8 

dt ~ 1000^ ~ 10,000,000,000’ 

When « = 800,1000 and 1200, we get ^ = 0-0512, 0-1 

and 0-1728 respectively. 

The sensitiveness is approximately doubled from 

800° to 1000°, and becomes three-quarters as great 

again up to 1200°. 
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Exercises II. (See p. 254 for Answers.) 

Difierentiate the following: 

(1) y — ax^ + (y. (2) y=l^ay^ — e. 

(3) y = l-2x^ + c^. (4) y = (fx^. 

(5) M = - (6) y=l-l8f + 22-4<. 
(j 

Make up some other examples for yourself, and try 

your hand at differentiating them. 

(7) If I and 4 be the lengths of a rod of iron at 

the temperatures t° C. and 0° C. respectively, then 

= 4(1 + 0'000012^). Find the change of length of the 

rod per degree Centigrade. 

(8) It has been found that if c be the. candle power 

of an incandescent electric lamp, and Fbe the voltage, 

c = a V^, where a and h are constants. 

Find the rate of change of the candle power with 

the voltage, and calculate the change of candle power 

per volt at 80, 100 and 120 volts in the case of a lamp 

for which ()-6 x 10-^® and & = G. 

(9) The frequency n of vibration of a string of 

diameter D, length L and specific gravity c, stretched 

with a force T, is given by 

Find the rate of change of the frequency when D, L. 
(T and T are varied singly. 

O.M.E. 0 
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(10) The greatest external pressure P which a tube 

can support without collapsing is given by 

i>8’ , 

where E and o- are constants, t is the thickness of the 

tube and D is its diameter. (This formula assumes 

that 4st is small compared to D.) 
Compare the rate at which P varies for a small 

change of thickness and for a small change of diameter 

taking place separately. 

(11) Find, from first principles, the rate at which 

the following vary with respect to a change in 

radius; 

(a) the circumference of a circle of radius r; 

{h) the area of a circle of radius r; 

(c) the lateral area of a cone of slant dimension I; 

{d) the volume of a cone of radius r and height h , 
(e) the area of a sphere of radius r; 

(/) the volume of a sphere of radius r. 

(12) The length L of an iron rod at the temperature 

T being given by L = /j[l+0'000012(y—i)], where 

is the length at the temperature t, find the rate of 

variation of the diameter D of an iron tyre suitable 

for being shrunk on a wheel, when the temperature 

T varies. 



CHAPTER VI. 

SUMS, DIFFEKENCES, PEODUCTS, AND 

QUOTIENTS. 

We have learned how to differentiate simple alge¬ 

braical functions such as x^ + e or ax'^-, and we have 

now to consider how to tackle the sum of two or 

more functions. 

For instance, let 

y = (.*2 + c)++ h); 

what will its ^ be ? How are we to go to work 
tlx ^ 

on this new job ? 

The answer to this question is quite simple: just 

differentiate them, one after the other, thus: 

^ =2x + (Ans.) 

If you have any doubt whether this is right, try 

a more general case, working it by first principles. 

And this is the way. 

Let y = u + v, where w is any function of x, and 

V any other function of x. Then, letting x increase 

to x-\-dx, y will increase to y + dy; and u will 

increase to u+dti: and v to v + dv. 
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And we shall have: 

y-\-dy=u-\-du-\-v-^dv. 

Subtracting the original ^ = + we get 

dy = du+dv, 

and dividing through by dx, we get: 

dy _du ^dv 
dx dx,dx 

This justifies the procedure. You differentiate each 

function separately and add the results. So if now 

we take the example of the preceding paragraph, and 

put in the values of the two functions, \ve shall have, 

using the notation shown (p. 17), 

dy _d{x’--{-(i) 
dx dx dx 

= 2x +4aaj®, 

exactly as before. 

If there were three functions of x, which we may 

call V and w, so that 

then 

y = u + v+iv; 

__dM _^dv div 
dx dx ' dx~^dx 

As for suhtraction, it follows at once; for if the 

function v had itself had a negative sign, its 

differential coefficient would also be negative; so 

that by differentiating 

y = u—v, 

dy _ dti dv 
dx dx dx' 

we should get 
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But when we come to do with Products, the thing 

is not quite so simple. 

Suppose we were asked to differentiate the expression 

y = {x‘‘-\ c)x + h), 

what are we to do? The result will certainly not 
be 2as’ X ; for it is easy to see that neither c X ax*‘, 
nor X h, would have been taken into that product. 

Now there are two ways in which we may go 

to work. 

First way. Do the multiplying first, and, having 

worked it out, then differentiate. 

Accordingly, we multiply together + c and ax*‘ph. 

This gives ax^+aex*‘pbx‘^ + be. 
Now differentiate, and we get: 

^=Qax^ + ^acx^+2bx. 
ax 

Second way. Go back to first principles, and 

consider the equation 

y = uxv, 

where u is one function of x, and v is any other 

function of x. Then, if x grows to be x-\-dx\ and 

y to y + dy, and « becomes u + dw, and v becomes 

V + dv, we shall have: 

y-\-dy = {u+du) x {v + dv) 
= U’V+U‘dv-{-V'du-\-dU'dv. 

Now djU • dv is, & small quantity of the second order 

of smallness, and therefore in the limit may be 

discarded, leaving 

y+dy~U'V+u-dv-\-v-du. 
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Then, subtracting the original y = U‘V, we have left 

dy = u-dv+v-du', 

and, dividing through by dx, we get the result: 

di! dv , dv. 

dx dx dx 

This shows that our instructions will be as follows; 

To differentiate the product of two functions, multiply 

each function by the differential coeffic%ent of the 

other, and add together the two products so obtained. 

You should note that this process amounts to 

the following; Treat u as constant while you 

differentiate v, then treat v as constant while you 

differentiate w, and the whole differential coefficient 

™ will he the sum of these two treatments. 
dx 

Now, having found this rule, apply it to the 

concrete example which was considered above. 

We want to differentiate the product 

(a?-\-c)y,{ax^-Vb). 

Call {x^ + c) = u\ and {ax*‘ + b) = v. 

Then, by the general rule just established, we 

may write: 

d{ax‘*‘ + h) 

dx dx 

= {x^+c)4iaae? 

= Qax^ + 4ac,r/ 

+ {ax*^+h)'2x 

+ 2ax^->r2bx, 

+ 2bx, 

d{x^+c) 

exactly as before. 



QUOTIENTS 

Lastly, we have to differentiate quotients. 

Think of this example, y = ^ 

it is no use to try to work out the division beforehand, 
because x^ + a will not divide into bx^ + c, neither 
have they any common factor. So there is nothing 
for it but to go back to first principles, and find a 

rule. 

So we will put ’ 

where u and v are two different functions of the 

independent variable x. Then, when a; becomes 
x + dx, y will become y + dy\ and u will become 

+ and V will become + So then 
, ti + dw 

y^dy-^dv 
Now perform the algebraic division, thus: 

v + dv u+du 
u- dv 

Md-; 

u dw u-dv 

du— 

du-\- 

u-dv 
V 

du • dv 
V 

u-dv 
V 

u ■ dv 
V 

du • dv 
V 

u-dv-dv 

du ■ dv u-dv- dv 

V 
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As both these remainders are small quantities of 

the^ second order, they may be neglected, and the 

division may stop here, since any further remainders 

would be of still smaller magnitudes. 

So we have got: 

which may be written 

w V • du-u- dv 
V 

Now subtract the original y = '^, and we have left: 

dy = 
V ■ du -u-dv 

whence 

du dv 

dy dx '^dx 
dx 

This gives us our instructions as to how to differ¬ 

entiate a quotient of two functions. Multiply the 

divisor function by the differential coefficient of 

the dividend function; then multiply the dividend 

function by the differential coefficient of the divisor 

function; and subtract. Lastly divide by the square 
of the divisor function. 

Going back to our example ' 

write = 

and x‘^ + a = v. 
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dx {x^+af 

_ +a){^hx^) — (bx^+c){2x) 
(x^+af 

dy Zhx^+babx^ — 2cx , . . 

S- 

The working out of quotients is often tedious, but 

there is nothing difficult about it. 

Some further examples fully worked out are given 

hereafter. 

(1) Differentiate —+ 

O.^ 
Being a constant, ^ vanishes, and we have 

But I; so we get: 

dy_oa 2_ 
tx~~W^ ~ h 

(2) Differentiate y=-‘la\ll)x^ — ^^-^—’liJab. 

Putting X in the index form, we get 

y — x^—'^hl/ ax~'^ — 2 V ah. 

~ = ^as/h X f X 
dx 

= ‘AaiJbx+ 

^ax(-l)xa3-i-i, 

Bb^a 
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4'4 
(3) Differentiate ^ — -^=—27°. 

This may be written; s= 1'8 0 “ — 4'4 6 ^—27°. 

The 27° vanishes, and we have 

g = l-8x-|X0 ^-4-4x(-i)0"*"^ 

or, ^1=-1-2 0'"+ 0-88 0“^; 
dO 

or 0'88 1-2 
de 4/06 4/06' 

(4) Differentiate « = (3i(^ —1'2^+1)® 

A direct way of doing this will be explained later 

(see p. 67) ; but we can nevertheless manage it now 

without any difSeulty. 

Developing the cube, we get 

^; = 27«®-32-4«6 + 39'96i5^-23-328f+13S2«2-3-6«+l; 

hence 

dm 
di 

162^8 _ 162«'‘+159'84«3- 69-984i52+ 26-64i5- 3-6. 

(5) Differentiate y = {2x — 2>){x+lY'. 

dy^_ 3)4(-x‘ + iy+l)] ^ j y,d{2x-z) 

dx 

= (2®-3) 

dx 

{x+lf^^-+{x+l) 

+(a?+l)‘ 

dx 

djx+iy 
dx . 

.d(2x — Z) 
dx 

= 2(aj+l)[(2a3 - 3)+(a; +1)] = 2(a3+1)(3,* —2); 

or, more simply, multiply out and then differentiate. 
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(6) Differentiate 

dy 
dx 

= 0-5 X' 

'j/ = 0-5x^(x 

,d(x—3) 

S). 

-i-(x — S) 
d(x^y 

dx ' dx 
= 0’5 [a?® + {x — 3) X 3,x'^] = 2a?® — 4-5a?®. 

Same remarks as for preceding example. 

(7) Differentiate Vd + • 

This may be written 

w; = (0 + 0-i)(0* + 0“"). 

dw 

=(d+d-')ad'^-id"^)+(0V0'"')(i-d-®) 

= 1(0"+0“" - 0”" - 0-") + (0" + - 0^" - 0“ 

x/0®)^"(x/0 Je^’ 

This, again, could be obtained more simply by 

multiplying the two factors first, and differentiating 

afterwards. This is not, however, always possible; 

see, for instance, p. 173, example 8, in which the 

rule for differentiating a product must be used. 

(8) 
a 

Differentiate y=-y=- 
l+ava?+(*®a? 

d{l + ax^ + a^x) 

dy 
(1 + ax^-\-a?x) X 0 — a- 

dx 

dx {l + asj x+a^'xY 

a{\ax~^^+ c^) 

(1 + aa?^ + a®a?)® 
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(9) Differentiate y = - f 
«%' “I” JL 

dy _ +1) 2x' — X 2x 2x 
dx 

(10) Differentiate y = 
-j- \/ X 

In the indexed form, y = 

->J X 

a — x^ 

dy^{a-a(y^){lx ^-)-{a-j-x^X-jx ^x^'+a+x^' 

(a-x^f 2{a~x'^fx^ ' 

hence a 

(11) Differentiate 0 

Now 0 

dy _ 

dx (^a — „J xXsfX 

l — as/d 

1 + a 4/^® 

1 —ad‘ 

1 + at^ 

dO^ (1 + at^X - - (1 - aU) x |-a^^ 

{l + afif 

5a2 4/#'^ — ^ - 9a 4/^ 

6(1 +a 4/3)^ 

(12) A reservoir of scjuare cross-section has sides 

sloping at an angle of 45° with the vertical. The side 
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of the bottom is 200 feet. Find an expression for the 

quantity pouring in or out when the depth of water 

varies by 1 foot; hence find, in gallons, the quantity 

withdrawn hourly when the depth is reduced from 

14 to 10 feet in 24 hours. 

The volume of a frustum of pyramid of height H, 

and of bases A and a, is V = -^{A+a + >JAa). It is 

easily seen that, the slope being 45°, if the depth be 

h, the length of the side of the square surface of the 

water is 200 + 2A, feet, so that the volume of water is 

~ [2002 + (200 + 2hf+200(200 + 2Kj\ 

= 40,000^+ 400^2+ 

dV 
~ = 40,000d-800A+4/i2 = cubic feet per foot of depth 
cttt 

variation. The mean level from 14 to 10 feet is 

12 feet, when A =12, 
<W 

dh 
= 50,176 cubic feet. 

Gallons per hour corresponding to a change of depth 

^ 4x50,l76x6-25 „ 
of 4 ft. in 24 hours =-2^-= 52,267 gallons. 

(13) The absolute pressure, in atmospheres, P, of 

saturated steam at the temperature f C. is given by 

Dulong as being P = long as t is above 

80°. Find the rate of variation of the pressure with 

the temperature at 100° C. 
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Expand the numerator by the binomial theorem 

(see p. 141). 

P = (40S + 5 X Wt +10 X +10 X 402^3 
+ 5x40«^ + <5); 

hence 
dP 1 

d,t 537,824x105 

(5 X 40^+20 X 405^+30 x mH^+2Q x + 

when i = 100 this becomes 0036 atmosphere per 

degree Centigrade change of temperature. 

Exercises III. (See the Answers on p. 255.) 

(1) Differentiate 

(a) M=l+,'u + j^ + 

(h) y = ax^ + hx+c. 

{d) y = {x + a)^. 

x^ 

1 x2x3'^”" 

(c) y = {x + af. 

(2) If w=^at — ^bf) find 
dw 
dt 

(3) Find the differential coefficient of 

y = (x + \/-l)x(x-^-l). 

(4) Differentiate 

y = 097x- 34.*2) x (7 + 22,r - 83.^3). 

(5) If £)7 = (?/ + 8)x(.y + 5), find ~ 

(6) Differentiate 7/ = l‘3709.*x(112'6 + 45’202,*^). 
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Find the differential coefficients of 

(7) y = 
+ Q 

3£c+2 

(9) y= 
ax+h 
cx + d 

(8) y= 

(10) y = 

\+x+2x‘^+^x^ 
l+x-\-2x^ 

x-^^+b 

(11) The temperature t of the filament of an in¬ 

candescent electric lamp is connected to the current 

passing through the lamp by the relation 

C=a + ht + cf. 

Find an expression giving the variation of the 

current corresponding to a variation of temperature. 

(12) The following formulae have been proposed to 

express the relation between the electric resistance R 
of a wire at the temperature t° 0., and the resistance 

Rf! of that same wire at 0° Centigrade, a, b, c being 

constants. i2 = ^^(l-+-(*« 

R = jR()( 1 “1- (^t -|- b s/1\ 

R = R,{l + at+bf)-\ 

Find the rate of variation of the resistance with 

regard to temperature as given by each of these 

formulae. 

(13) The electromotive-force E of a certain type of 

standard cell has been found to vary with the tem¬ 

perature t according to the relation 

15/= 1-4340[1-0-000814<(«-15) 

-f-0-000007(«-15)2] volts. 

Find the change of electromotive-force per degree, 

at 15°, 20° and 25°. 
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(14) The electromotive-force necessary to maintain 

an electric arc of length I with a current of intensity 

i has been found by Mrs. Ayrton to be 

E=a + hl+^^; 

where a, h, c, h are constants. 

Find an expression for the variation of the electro¬ 

motive force {a) with regard to the length of the arc; 

(h) with regard to the strength of the current. 



CHAPTER VII. 

SUCCESSIVE DIFFERENTIATION. 

Let us try the effect of repeating several times over 

the operation of differentiating a function (see p. 14). 

Begin with a concrete case. 

Let = 

First differentiation, 5x^. 
Second differentiation, 5 X 4^sc^ = 20x^. 
Third differentiation, 5x4x3a;® =60ie®. 

Fourth differentiation, 5x4x3x2a? = 120a;. 

Fifth differentiation, 5x4x8x2xl = 120. 

Sixth differentiation, = 0. 

There is a certain notation, with which we are 

already acquainted (see p. 15), used by some writers, 

that is very convenient. This is to employ the 

general symbol y(a;) for any function of x. Here 

the symbol ) is read as “function of,” without 

saying what particular function is meant. So the 

statement y=f(x) merely tells us that y is a function 

of X, it may be a;® or ax^\ or cos x or any other com¬ 

plicated function of x. 

The corresponding symbol for the differential co¬ 

efficient is /'(x), which is simpler to write than 
dy 
dx 

This is called the “ derived function ” of x. 
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Suppose we differentiate over again, we shall get 

the “second derived function” or second differential 

coefficient, which is denoted by /"{pc')and so on. 

Now let us generalize. 

Let y=f(x) = x^. 
First differentiation, f'{x) = nx”'~^. 
Second differentiation, f"{x) = n{n,— l)x‘^~^. 

Third differentiation, f'''{x) — n{n — l){n — 2)x^''^. 
Fourth differentiation, 

/”"(a?)=— 1) (n — 2) (}i — 3) a?" ■ f 

etc., etc. 

But this is not the only way of indicating successive 

differentiations. For, 

if the original function be y=/(x); 

once differentiating gives 
dy _ 
dx 

twice difli'erentiating gives - =fix'); 

and this is more conveniently written as or 

more us 
dh/ . . ycixy 

asually Similarly, we may write as the 

result of thrice differentiating, =f'''{pd). 
(XQG 
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Examples. 
Now let us try y =f(x) = + 3' 5a?® — \x^ + a? — 2. 

/'(a?) = 28a?®+10'5a?® —a?+l, 
dx 

g=/"(a;) = 84^K® + 21^«-l, 

2s=/'"(^')=168a,‘ + 21, 

g=/""(a.) = 168, 

S =/"'"(*)=0. 

In a similar manner if y = <i>(*') = 3a?(a?^ — 4), 

0'(.a?) = J = 3[a? X 2«+(a?® - 4) X 1] = 8 (3®^ - 4), 

(^I'ix) = = 3 X 6.x‘ = 18a?, 

= 0. 

Exercises IV. (See page 255 for Answers.) 

Find and ^ for the following expressions : 
CvOi* (a/00~‘ 2 

(1) y=l7,x‘+12a?®. (2) y = 

/v» /v>2 /vjS /y»4: 

/ O \ 1 I I I I 
(3) y=^+i+ y^2 + Y^Yx 3 1x2 k 3 X 4 ■ 

(4) Find the 2nd and 3rd derived functions in 

the Exercises III. (p. 46), No. 1 to No. 7, and in the 

Examples given (p. 41), No. 1 to No. 7. 



CHAPTER VIII. 

WHEN TIME VARIES. 

Some of the most important problems of the calculus 

are those where time is the independent variable, and 

we have to think about the values of some other 

quantity that varies when the time varies. Some 

things grow larger as time goes on; some other things 

grow smaller. The distance that a train has got from 

its starting place goes on ever increasing as time goes 

on. Trees grow taller as the years go by. Which is 

growing at the greater rate; a plant 12 inches high 

which in one month becomes 14 inches high, or a 

tree 12 feet high which in a year becomes 14 feet 

high ? 

In this chapter we are going to make much use 

of the word rate. Nothing to do with poor-rate, or 

water-rate (except that even here the word suggests 

a proportion—a ratio—so many pence in the pound). 

Nothing to do even with birth-rate or death-rate, 

though these words suggest so many births or deaths 

per thousand of the population. When a motor-car 

whizzes by us, we say: What a terrific rate! When 

a spendthrift is flinging about his money, we remark 

that that young man is living at a prodigious rate. 
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What do we mean by rate ? In both these cases we 

are making a mental comparison of something that is 

happening, and the length of time that it takes to 

happen. If the motor-car flies past us going 10 yards 

per second, a simple bit of mental arithmetic will 

show us that this is equivalent—while it lasts to a 

rate of 600 yards per minute, or over 20 miles per 

hour. 
Now in what sense is it true that a speed of 

10 yards per second is the same as 600 yards 

per minute ? Ten yards is not the same as 600 yards, 

nor is one second the same thing as one minute. 

What we mean by saying that the rate is the same, 

is this: that the proportion borne between distance 

passed over and time taken to pass over it, is the 

same in both cases. 

Take another example. A man may have only 

a few pounds in his possession, and yet be able to 

spend money at the rate of millions a year—provided 

he goes on spending money at that rate for a few 

minutes only. Suppose you hand a shilling over 

the counter to pay for some goods; and suppose the 

operation lasts exactly one second. Then, during 

that brief operation, you are parting with your money 

at the rate of 1 shilling per second, which is the 

same rate as £3 per minute, or £180 per hour, or 

£4320 per day, or £1,5'76,800 per year! If you have 

£10 in your pocket, you can go on spending money 

at the rate of a million a year for just minutes. 

It is said that Sandy had not been in London 
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above five minutes when “bang went saxpence.” If 

he were to spend money at that rate all day long, 

say for 12 hours, he would be spending 6 shillings 
an hour, or £3. 12s. per day, or £21. 12s. a week, 

not counting the Sawbbath. 

Now try to put some of these ideas into differential 

notation. 

Let y in this case stand for money, and let t stand 

for time. 

If you are spending money, and the amount you 

spend in a short time dt be called dy, the rate of 

spending it will be or rather, should be written 

with a minus sign, as — 
<^j 
dt’ 

because dy is a decrement, 

not an increment. But money is not a good example 

for the calculus, because it generally comes and goes 

by jumps, not by a continuous flow—you may earn 

£200 a year, but it does not keep running in all 

day long in a thin stream; it comes in only weekly, 

or monthly, or quarterly, in lumps: and your ex¬ 

penditure also goes out in sudden payments. 

A more apt illu.stration of the idea of a rate is 

furnished by the speed of a moving body. From 

London (Euston station) to Liverpool is 200 miles. 

If a train leaves London at 7 o’clock, and reaches 

Liverpool at 11 o'clock, you know that, since it has 

travelled 200 miles in 4 hours, its average rate must 

have been 50 miles per hour; because ^ = A®-. Here 

you are really making a mental comparison between 



WHEN TIME VARIES 65 

the distance passed over and the time taken to pass 

over it. You are dividing one by the other. If y is 

the whole distance, and t the whole time, clearly the 

average rate is Now the speed was not actually 

constant all the way: at starting, and during the 

slowing up at the end of the journey, the speed was 

less. Probably at some part, when running down¬ 

hill, the speed was over 60 miles an hour. If, during 

any particular element of time dt, the corresponding 

element of distance passed over was dy, then at that 

part of the journey the speed was The rate at 

which one quantity (in the present instance, distance) 
is changing in relation to the other quantity (in this 

case, time) is properly expressed, then, by stating the 

differential coefficient of one with respect to the other. 

A velocity, scientifically expressed, is the rate at which 

a very small distance in any given direction is being 

passed over; and may therefore be written 

But if the velocity ® is not uniform, then it must 

be either increasing or else decreasing. The rate at 

which a velocity is increasing is called the acceleration. 
If a moving body is, at any particular instant, gaining 

an additional velocity dv in an element of time dt, 
then the acceleration a at that instant maybe written 

dv 
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but dv is itself d 
dy 

Hence we may put 

dt 

and this is usually written a = 
_ dhj. 

or the acceleration is the second differential coefficient 

of the distance, with respect to time. Acceleration is 

expressed as a change of velocity in unit time, for 

instance, as being so many feet per second per second; 

the notation used being feet —second^. 

When a railway train has just begun to move, its 

velocity v is small; but it is rapidly gaining speed—it 

is being hurried up, or accelerated, by the effort of the 

'^'2/ 

So its is large. When it has got up its engine. 

top speed it is no longer being accelerated, so that 

has fallen to zero. But when it nears its then ^ 
dd' 

stopping place its speed begins to slow down; may, 

indeed, slow down very quickly if the brakes are put 

on, and during this period of deceleration or slackening 

of pace, the value of that is, of ^ will be negative. 

To accelerate a mass m requires the continuous 

application of force. The force necessary to accelerate 

a mass is proportional to the mass, and it is also 

proportional to the acceleration which is being im¬ 

parted. Hence we may write for the force f, the 

expression 
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or 

or 

/= m 
dm. 

f=m 
d}y 
dt^' 

The product of a mass by the speed at which it is 

going is called its momentum, and is in symbols mv. 
If we differentiate momentum with respect to time 

we shall get for rate of change of mo¬ 

mentum. But, since m is a constant quantity, this 

may be written which we see above is the same 

as f. That is to say, force may be expressed either 

as mass times acceleration, or as rate of change of 

momentum. 

Again, if a force is employed to move something 

(against an equal and opposite counter-force), it does 

work; and the amount of work done is measured by 

the product of the force into the distance (in its 

own direction) through which its point of application 

moves forward. So if a force f moves forward 

through a length y, the work done (which we may 

call w) will be ^ y 

where we take _/ as a constant force. If the force 

varies at different parts of the range y, then we must 

find an expression for its value from point to point. 

If f be the force along the small element of length 

dy, the amount of work done will h&fxdy. But as 

dy is only an element of length, only an element of 
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work will be done. If we write w for work, then an 

element of work will be dw; and we have 

dw=fY.dy\ 

which may be written 

dw = ma ■ dy; 

or dw==m^-dy, 

or dw = m 
dv 
dt 

•dy. 

Further, we may transpose the expression and write 

dw _ . 

dy~^' 

This gives us yet a third definition of force \ that 

if it is being used to produce a displacement in any 

direction, the force (in that direction) is equal to the 

rate at which work is being done per unit of length 

in that direction. In this last sentence the word 

rate, is clearly not used in its time-sense, but in its 

meaning as ratio or proportion. 

Sir Isaac Newton, who was (along with Leibnitz) 

an inventor of the methods of the calculus, regarded 

all quantities that were varying as flowing] and the 

ratio which we nowadays call the differential co¬ 

efficient he regarded as the rate of flowing, or the 

fluxion of the quantity in question. He did not use 

the notation of the dy and dx, and dt (this was due 

to Leibnitz), but had instead a notation of his own. 

If y was a quantity that varied, or “ flowed,” then his 

symbol for its rate of variation (or “fluxion”) was 
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y. If X was the variable, then its fluxion was called 

X. The dot over the letter indicated that it had been 

differentiated. But this notation does not tell us 

what is the independent variable with respect to 

which the differentiation has been effected. When 

we see we know that y is to be differentiated with 
dt j 

respect to t. If we see ^ we know that y is to be 

differentiated with respect to x. But if we see merely 

y, we cannot tell without looking at the context 

whether this is to mean ^ or ^ or or what is 
dx dt dz 

the other variable. So, therefore, this fluxional no¬ 

tation is less informing than the differential notation, 

and has in consequence largely dropped out of use. 

But its simplicity gives it an advantage if only we 

will agree to use it for those cases exclusively where 

time is the independent variable. In that case y will 

dy du 
mean ^ and u will mean and X will mean 

d'^x 

Adopting this fluxional notation we may write the 

mechanical equations considered in the paragraphs 

above, as follows: 

distance 

velocity 

acceleration 

force 

work 

X 

v = x, 
a = v = x, 
f= mv = nix, 

w = x'A mix. 
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Examples. 

(1) A body moves so that the distance x (in feet), 

which it travels from a certain point 0, is given by 

the relation a? = 0'2i^ + 10‘4, where t is the time in 

seconds elapsed since a certain instant. Find the 

velocity and acceleration 5 seconds after the body 

began to move, and also find the corresponding values 

when the distance covered is 100 feet. Find also 

the average velocity during the first 10 seconds of 

its motion. (Suppose distances and motion to the 

right to be positive.) 

Now 

'V = X = 
dx 
dt 

£C = 0-2!!2 + 10-4, 

■O'H', and a = x— = 0 '4 = constant. 
dv 

When ^ = 0, x = 10'4i and v — 0. The body started 

from a point 10‘4 feet to the right of the point 0; 
and the time was reckoned from the instant the 

body started. 

When t=5, v = 0-4 x 6 = 2 ft./sec.; a = OA ft./sec^. 

When a; = 100, 100 = 0-2i{^+10'4, or ({^ = 448, 

and « = 21-17 sec.; = 0-4x21-17 = 8-468 ft./sec. 

When t= 10, 

distance travelled = 0-2 x 10^+10-4 —10-4 = 20 ft. 

Average velocity = l-g- = 2 ft./sec. 

(It is the same velocity as the velocity at the middle 

of the interval, ^ = 5; for, the acceleration being con¬ 

stant, the velocity has varied uniformly from zero 

when t — 0 to 4 ft./sec. when #=10.) 
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(2) In the above problem let us suppose 

,* = 0-2«2 + 3« + 10-4 

^ ^ = 0-4i+8; a = » = -,^- = 0-4 = constant. 
at 

When « = 0, a? = 10-4 and v = 3 ft./sec., the time is 

reckoned from the instant at which the body passed a 

point 10-4 ft. from the point 0, its velocity being then 

already 3 ft./sec. To find the time elapsed since it began 

moving, let 'y = 0; then 0'4if + 3 = 0, t= -f-— -7 5 sec. 

The body began moving 7 5 sec. before time was 

begun to be observed; 5 seconds after this gives 

t=-2-5 and ■j; = 0-4 x -2-5+ 3 = 2 ft./sec. 

When a,'= 100 ft., 

100 = 0'2«2 + 3«+10'4; or ^2+15^-448 = 0; 

hence #= 14-95 sec., -y = 0-4 x 14-95 + 3 = 8-98 ft./sec. 

To find the distance travelled during the 10 first 

seconds of the motion one must know how far the 

body was from the point 0 when it started. 

When t= —7-5, 
® = 0-2 x(-7-5)2-3 X 7-5 + 10-4 = -O'So ft., 

that is 0-85 ft. to the left of the point 0. 
Now, when ^ = 2-5, 

X = 0-2 X 2-52 + 3x2-5 + 10-4 = 19-15. 

So, in 10 seconds, the distance travelled was 

19-15 + 0-85 = 20 ft., and 

the average velocity = -f -g- = 2 ft./sec. 

(3) Consider a similar problem when the distance 

is given by £r = 0-2i2 —3i5+10-4. Then ^ = 0-4^ 3, 

a = 0-4 = constant. When « = 0, a? = 10-4 as before, and 
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v = —3; so that the body was moving in the direction 

opposite to its motion in the previous cases. As the 

acceleration is positive, however, we see that this 

velocity will decrease as time goes on, until it becomes 

zero, when v = 0 or 0-4t — 3 = 0 ; or t = 7-5 sec. After 

this, the velocity becomes positive, and 5 seconds 

after the body started, ^=12'5, and 

'j; = 0'4xl2'5 — 3 = 2 ft./sec. 

When ,x‘ = 100, 

100 = 0-2«2_3«+10-4, or «2_i5^_448=,0, 

and «= 29-95; v = 0-4 x 29-95 - 3 = 8-98 ft./sec. 

When «is zero, .x* = 0-2x7-5^--3 x 7-5+ 10-4= —0-85, 

informing us that the body moves back to 0-85 ft. 

beyond the point 0 before it stops. Ten seconds later 

t = 17-5 and a? = 0 2 x 17 5^ —3 x 17-5 + 10-4= 19-15. 

The distance travelled = -85+ 19-15 = 20-0, and the 

average velocity is again 2 ft./sec. 

(4) Consider yet another problem of the same sort 

with ic = 0-2^3_3<2+10-4; v = a=l-2«-6. 

The acceleration is no more constant. 

When f = 0, ,* = 10-4, * = 0, a=—Q. The body is 

at rest, but just ready to move with a negative 

acceleration, that is to gain a velocity towards the 

point 0. 

(5) If we have ,* = 0-2^3 —3^+10-4, then * = 0-6^3 —3, 

and a=l-2^. 

When ^ = 0, ,* = 104, *=—3; a = 0. 

The body is moving towards the point 0 with 
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a velocity of 3 ft./sec., and just at that instant the 

velocity is uniform. 
We see that the conditions of the motion can always 

be at once ascertained from the time-distance equation 

and its first and second derived functions. In the 

last two cases the mean velocity during the first 

10 seconds and the velocity 5 seconds after the start 

will no more be the same, because the velocity is not 

increasing uniformly, the acceleration being no longer 

constant. 

(6) The angle 6 (in radians) turned through by a 

wheel is given by Q — — where t is the 

time in seconds from a certain instant; find the 

angular velocity w and the angular acceleration oc, 

(a)'’after 1 second; (6) after it has performed one 

revolution. At what time is it at rest, and how many 

revolutions has it performed up to that instant ? 

Writing for the acceleration 

When ^ = 0,0 = 3; to = 2 rad./sec.; a = 0. 

When ^ = 1, 
„ = 2-0-3 = 1-7 rad./sec.; «.= -O'G rad./sec^. 

This is a retardation; the wheel is slowing down. 

After 1 revolution 

0 = 27r = 6-28; 6-28 = 3-|-2«-0-l«». 

By plotting the graph, 0 = 3 + 2i—OTi®, we can get 

the value or values of t for which 0 = 6-28; these 

are 2-11 and 3-03 (there is a third negative value). 
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When t=2ll, 

0 = 6'28 ; eo = 2 —]-34 = 0'66 rad./sec.; 

a.= —1-27 rad./sec^. 

When # = 3-03, 

e = 6-28 ; « = 2 - 2-754 = - 0-754 rad./sec.; 

ot= —1-82 rad./sec^. 

The velocity is reversed. The -wheel is evidently 

at rest between these two instants; it is at rest when 
ft) = 0, that is when 0 = 2 —0-3i5®-, or when ^=2-58 sec., 

it has performed 

27r 

3+ 2x2-58-0-1x2-58* 
6-28 

= 1-025 revolutions. 

Exercises V. (See page 256 for Answers.) 

(1) If y = a + hf--\-et* , find ^ and —• 

Ans. ^ = 26^+4c«*; + 

(2) A body falling freely in space describes in t 

seconds a space s, in feet, expressed by the equation 
s = 16i^. Draw a curve showing the relation between 
s and t. Also determine the velocity of the body at 
the following times from its being let drop: t=2 
seconds; i = 4-6 seconds; ^ = 0-01 second. 

(3) If x — at — ^gf', find x and x. 

(4) If a body move according to the law 
s = 12 —4-5^ + 6-2^*, 

find its velocity when ^ = 4 seconds; s being in feet. 
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(5) Find the acceleration of the body mentioned in 

the preceding example. Is the acceleration the same 

for all values of t ? 

(6) The angle 0 (in radians) turned through by 

a revolving wheel is connected with the time t (in 

seconds) that has elapsed since starting, by the law 

0 = 2'l-3'2« + 4'8il 
Find the angular velocity (in radians per second) of 

that wheel when 1| seconds have elapsed. Find also 

its angular acceleration. 

(7) A slider moves so that, during the first part of 

its motion, its distance s in inches from its starting 

point is given by the expression 

s = 6'8^®—10'8^; ^ being in seconds. 

Find the expression for the velocity and the accelera¬ 

tion at any time; and hence find the velocity and the 

acceleration after 3 seconds. 

(8) The motion of a rising balloon is such that its 

height h, in miles, is given at any instant by the 

expression 7i = 0'5-l-jig-x/i —125 ; t being in seconds. 

Find an expression for the velocity and the accelera¬ 

tion at any time. Draw curves to show the variation 

of height, velocity and acceleration during the first 

ten minutes of the ascent. 

(9) A stone is thrown downwards into water and 

its depth p in metres at any instant t seconds after 

reaching the surface of the water is given by the 

expression 

C.M.E. 

p = 
4 

4 + 7^ 
+ 0'87 -1. 

E 
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Find an expression for the velocity and the accelera¬ 

tion at any time. Find the velocity and acceleration 

after 10 seconds. 

(10) A body moves in such a way that the spaces 

described in the time t from starting is given by 

s = t'^, where m is a constant. Find the value of n 

when the velocity is doubled from the 5th to the 10th 

second ; find it also when the velocity is numerically 

equal to the acceleration at the end of the 10th second. 



CHAPTEK TX. 

INTRODUCING A USEFUL DODGE. 

Sometimes one is stumped by finding that the ex¬ 

pression to be differentiated is too complicated to 

tackle directly. 

Thus, the equation 

y=(afi+a^)^ 

is awkward to a beginner. 

Now the dodge to turn the difficulty is this; Write 

some symbol, such as u, for the expression 

then the equation becomes 

which you can easily manage; for 

du 2 • 

Then tackle the expression 

u = x^ + a?‘. 

and differentiate it with respect to x, 

du „ 
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Then all that remains is plain sailing; 

for 
dx du dx ’ 

that is, ^ X 2x 

= f X 2x 

= 3a?(a3^+a^)4; 

and so the trick is done. 

By and bye, when you have learned how to deal 

with sines, and cosines, and exponentials, you will 

find this dodge of increasing usefulness. 

Examples. 
Let us practise this dodge on a few examples. 

(1) Differentiate y=\/a + x. 

Let a-\-x = ti. 

3l=i“ *=«»+»)"*• 

dy _ dy .^dw _ _ 

dx~ du dx 2^4+^' 

(2) Differentiate 

Let a+x^ = u. 

_ _ 
^ ija + x^ 

du „ ' dy , .s 
~f~ = ^x] y = u^\ -i — — • 

dx du 
dy _ dy du _ x 
dx du dx /J{a+x^^' 
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(3) Differentiate y = — . 

Let m—nx^+px~^ = u. 

du 
dx 

irT'S_4 

y—vP", 

2 Ify \ ^ ^ 1 y 
^ —-7-x^= —a(m —+ 
tte dx V a;V 

dy _ <??/ 6??^ 

lx du dx 

(4) Differentiate y -- 

Let u = a? — (]^. 

x^ 

J a?—cd" 

du 
= 3a?2; = 

3*2 _ dy ^ _ 

du dx J {x? — aPJ 

(5) Differentiate y = 
'1-x 
l+a? 

Write this as 
(1 — a?)^ 

<% 
<?a? 

(l + ,«)i d{l—x)^ 
dx 

l+a? 

(We may also write y = {1 — xY{I + x) ^ and differ¬ 

entiate as a product.) 
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Proceeding as in exercise (1) above, we get 

d{l-x)\_ 1 . d{l + x)i_ 1 

dx 2jl-x’ dx 2x/i+»’ 

Hence 

d^_ _ (1+a?)^_{\ — x)^_ 

dx ^ ‘2i(\-{-x')s/^~\'X 

_ 1 _ iJl—X . 

“ ~ WT+WT^ ~ 2^7(1+^ ’ 

dy 1 
or ^ =_ . 

dx {l+x)s/l-x‘^ 

(6) Differentiate y -- 
I of 

A1+£ +x^ 

We may write this 

y=x^{\+x^y^‘, 

dy ,.tv®±221] 

Differentiating (l+a;^)”^, as shown in exercise (2) 

above, we get 

d\i\+x^y^'\^_ x__ . 
dx \/{l+x‘^y’ 

dy_ ^'Jx s!x^ _>Jxiy>^x^') 
dx~^T^^ V(T+^8 “ 2x/(1 + X^f 

so that 



INTRODUCING A USEFUL DODGE 71 

(7) Differentiate y = {ao+fJx^ + x-\-a)^. 

Let x+ \/x^ + x + a = u. 

du ^ ^ d\_{x^+x+a)^'] 
dx dx 

y^w”, and ^=3^t^ = 3(^c+»/^e^+£c+a)^. 

Now let (£c^+a;+a)i'=i; and (a?*+a?+a) = w. 

dip 
dx 

= 2x+l; v = w^; 
dv 
dio 

2^ 

dv _ dv dw 
dx dw dx 

^{x^+x+a) ^(2a;+l). 

Hence 
dw_^ ■ 2a;+l 

dx ^fjx'^+x+d 

dy _dy (M 
dx du dx 

= Z{x+\lx'‘-+x + af 1 + 
2g; + l \ 

24x‘^+x+a^ 

(8) Differentiate y = 
ja^ + x^ ^jfjd — x'^ 

V a^ — x^y d+x^ 

We get 

_{d + x^)\d — x^)^ 

^ {a?'— x‘^)\cd+x^d 
{a^+x^)\d — x^) 

d^ 
dx 

={d+x^y 
-a;V^] ■ d[{cd+x^f] 

dx {a? — x^-'fdx 
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Let t{ = (a2_^2^-i v = {a^—x^). 

dv 
dx 

dll dll dv 1 

_i dn 1 
ii = v -j-= --v~ 

dv 6 
— 2a?. 

Let w = (a^ + x^)i and z = (cd+x^). 

iv=z^ 
dw 1 dz ^ 
dz “6^ 

dx dz dx 3 

Hence 

dx 
= (a^ + aj^)^: 

X X 

'i{a?-x^f Z{a^-x^f{a^+x^f' 

or 
dy X 
dx~^ 

' y a^+x 
y (id—x‘ 7 + “S 

{cd-x^y ^(a‘^-x‘^){a?+x'^f. 

(9) Differentiate y'^ with respect to y^. 

djif^) ny'^-^ n , 
d(y^) oy^~^ 5^ 

(10) Find the first and second differential coefficients 

of y=^sJ{a—x)x. 

dy_x d{[{a-x)xy^} s/{a-x)x 
dx h dx h 

Let [(a - x)x'fi: = u and let (a — a?)^? = w; then u = im. 

1 _ 1 

div 2 ^ 2^^?* 2j{a-x)x 
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dw 
dx 

= a—‘lx. 

dw dw du a — 2x , _ 

dw dx dx 2Mj{a—x)x 

Hence 

dy _ x{a—'2x) ^/J{a — x)x_ x{^a—4ix) 

dx~ Wj {a-x)x h 2h>J{a-x)x 

Now 

dx^ Ah^{a—x)x 

3a^ —12aa?+8®^ 

4<h{a^ x) \/ {a—x)x 

(We shall need these two last differential coefficients 

later on. See Ex. X. No. 11.) 

Exercises VI. (See page 257 for Answers.) 

Differentiate the following: 

(1) y = Jx‘^ + l. (2) y = jx^+al. 

(3) 2/ = 

(5) y = 

(7) y== 

1 

/Ja+x 

tJal — eV 
x^ 

(V-Val 
{a+xf 

(4) 2/ = 

(6) 2/ = 

a 

Ja—x^ 

il/x*+a 

i/x^+a 
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(8) Differentiate with respect to 

(9) Differentiate y=''^— 

The process can be extended to three or more 

differential coefEcients, so that ~ ^ X ^ X 
ax dz dv dx 

Examples. 

(1) = v — \', y = y/l+v, find 
% 

We have 

dv 
dx 

% 

dv 

dx 

dv 
dz 2s/l+v 

168a^g 

(2Vn^)j 

14 dz 
s® ’ dx 

= 12a?®. 

dv _'lx{?>x — Q) _ dx 

_28 

3a;®<y9a;®+7 

7a?® „ , 6?^? 

3«®+J; 
dt 
M'' dx 34/(®-1)^ ’ 

^__7»(5£r-6)(3«® + i) 
de' 

10 Vd® 

Hence 
3o4/(a;-i)Vd® 

an expression in which a? must be replaced by its 

value, and t by its value in terms of 6. 

x/L 
(3) If 0 = 

find 
dip 
dx 

3a®a? 

x/a?®' 

-0® 

1 + 0 
; and <p = \/3- 

■}s/2’ 
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We get 

dd_^ 

dx~ 

; and <p = s/3 = co 

3a^ _ d(o_ 1 

d0~ “(T+0)v/T^ 
(see example 5, p. 69); and 

d(]>_ 1 

So that __y_^ _y _, 
dx s/2xw^ (l + 0)-<yi —0^ 2kJoi? 

Replace now first m, then 0 by its value. 

Exercises VII. 

You can now successfully try the following. (See 

page 25X for Answers.) 

(1) If'M = |«®; v = 3(u+m^); and find 

(2) If ^ = .3as'2+v''2; a = Vl+«/; 

n j dv 
find 

dx 
/y>3 T 

(3) If y = z = (l+yf; and m = find 
du 
dx' 



CHAPTBE X. 

GEOMETRICAL MEANING OF DIFFERENTIATION. 

It is useful to consider what geometrical meaning can 

be given to the differential coefficient. 

In the first place, any function of oo, such, for 

example, as a?®, or mJx, or aoo + h, can be plotted as 

a curve; and nowadays every schoolboy is familiar 

with the process of curve-plotting. 

Let PQR, in Fig. 7, be a portion of a curve plotted 

with respect to the axes of coordinates OX and OY. 
Consider any point Q on this curve, where the 

abscissa of the point is a? and its ordinate is y. 
Now observe how y changes when x is varied. If x 
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is made to increase by a small increment dx, to the 

right, it will be observed that y also (in this particular 

curve) increases by a small increment dy (because this 

particular curve happens to be an ascending curve). 

Then the ratio of dy to, dx is a measure of the degree . 

to which the curve is sloping up between the two 

points Q and T. As a matter of fact, it can be seen 

on the figure that the curve between Q and T has 

many different slopes, so that we cannot very well 

speak of the slope of the curve between Q and T. If, 

however, Q and T are so near each other that the 

small portion QT of the curve is practically straight, 

then it is true to say that the ratio ^ is the slope of 

the curve along QT. The straight line QT produced 

on either side touches the curve along the portion QT 
only, and if this portion is indefinitely small, the 

straight line will touch the curve at practically 

one point only, and be therefore a tangent to the 

curve. 

This tangent to the curve has evidently the same 

slope as QT, so that ^ is the slope of the tangent to 

dy 
the curve at the point Q for which the value of ^ is 

found. 
We have seen that the short expression “ the slope 

of a curve ” has no precise meaning, because a curve 

has so many slopes—in fact, every small portion of a 

curve has a different slope. “ The slope of a curve at 
a point ” is, however, a perfectly defined thing; it is 
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the slope of a very small portion of the curve situated 

just at that point, and we have seen that this is the 

same as “ the slope of the tangent to the curve at that 

point.” 

Observe that dx is a short step to the right, and 

dy the corresponding short step upwards. These 

steps must be considered as short as possible—in fact 

indefinitely short,—though in diagrams we have to 

represent them by bits that are not infinitesimally 

small, otherwise they could not be seen. 

We shall hereafter make considerable use of this 

circumstance that ^ represents the slope of the curve 
at any point. 

If a curve is sloping up at 45° 

as in Fig. 8, dy and dx will be 

of ^ = 1. 
dx 

at a particular point, 

equal, and the value 
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If the curve slopes up steeper than 45° (Fig. 9), 

^ will be greater than 1. 
ax ® 

If the curve slopes up very gently, as in Fig. 10, 

ir- will be a fraction smaller than 1. 
ax 

For a horizontal line, or a horizontal place in a 

curve, dy = 0, and therefore ^ = 

If a curve slopes downward, as in Fig. 11, dy will 

be a step down, and must therefore be reckoned of 
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negative value; hence ^ will have negative sign 

also. 

If the “curve” happens to be a straight line, like 

dv 
that in Fig. 12, the value of ^ will be the same at 

all points along it. In other words its slope is constant. 

If a curve is one that turns more upwards as it 

goes along to the right, the values of ~ will become 

greater and greater with the increasing steepness, as 

in Fig. 13. 
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If a curve is one that gets flatter and flatter as it 

goes along, the values of will become smaller and 

smaller as-the flatter part is reached, as in Fig, 14. 

If a curve first descends, and then goes up again, 

as in Fig. 15, presenting a concavity upwards, then 

dy 
will first be negative, with diminishing clearly , 

dx 
values as the curve flattens, then will be zero at the 

point where the bottom of the trough of the curve is 

reached; and from this point onward ^ will have 

positive values that go on increasing. In such a case 

y is said to pass by a minimum. The minimum 

value of y is not necessarilj^ the smallest value of y, 

it is that value of y corresponding to the bottom of 

the trough; for instance, in Fig. 28 (p. 101), the 

value of y corresponding to the bottom of the trough 

is 1, while y takes elsewhere values which are smaller 

than this. The characteristic of a minimum is that 

y must increase on either side of it. 
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JSf.B.—For the particular value of x that makes 

y a minimum, the value of = 0. 

If a curve first ascends and then descends, the 

values of will be positive at first; then zero, as 
ax 

the summit is reached; then negative, as the curve 

slopes downwards, as in Fig. 16. In this case y is 

said to pass by a maximum, but the maximum 

value of y is not necessarilj?- the greatest value of y. 
In Fig. 28, the maximum of y is 2^, but this is by no 

means the greatest value y can have at some other 

point of the curve. 

N.B.—For the particular value of x that makes 

y a maximum, the value of ^ = 0. 

If a curve has the peculiar form of Fig. 17, the 

values of ^ will always be positive; but there will 

be one particular place where the slope is least steep, 

where the value of ^ will be a minimum; that is, 
ax 

less than it is at any other part of the curve. 
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If a curve has the form of Fig. 18, the value of ^ 

will be negative in the upper part, and positive in the 

lower part; while at the nose of the curve where it 
^/IM 

becomes actually perpendicular, the value of ^ will 

be infinitely great. 

Now that we understand that ^ measures the 
ax 

steepness of a curve at any point, let us turn to some 

of the equations which we have already learned how 

to differentiate. 

(1) As the simplest case take this: 

y=x-\-b. 

It is plotted out in Fig. 19, using equal scales 

for X and y. If we put x = 0, then the corresponding 

ordinate will be y = h] that is to say, the “curve” 

crosses the ^/-axis at the height h. From here it 
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ascends at 45°; for whatever values we give to x to 

the right, we have an equal y to ascend. The line 

has a gradient of 1 in 1. 

Now differentiate y = x+'b, by the rules we have 

already learned (pp. 22 and 26 ante), and we get ^ = 1. 
ChOG 

The slope of the line is such that for every little 

step dx to the right, we go an equal little step dy 
upward. And this slope is constant—always the 

same slope. 

(2) Take another case: 

y = ax+h. 

We know that this curve, like the preceding one, will 

start from a height h on the ^-axis. But before we 

draw the curve, let us find its slope by differentiating; 

which gives us ^ The slope will be constant, at 

an angle, the tangent of which is here called a. Let 

us assign to a some numerical value—say -J. Then we 

must give it such a slope that it ascends 1 in 3; or 
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dx will be 3 times as great as dy\ as magnified in 

Fig. 21. So, draw the line in Fig. 20 at this slope. 

Fig. 21. 

(3) Now for a slightly harder case. 

Let y — ax‘^ + h. 

Again the curve will start on the ^-axis at a height 

h above the origin. 

Now differentiate. [If you have forgotten, turn 

back to p. 26; or, rather, don’t turn back, but think 

out the differentiation.] 

dx 
= 2ax. 

This shows that the steepness will not be constant: 

it increases as x increases. At the starting point P, 
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where x — O, the curve (Fig. 22) has no steepness 

—that is, it is level. On the left of the origin, where 

X has negative values, ^ will also have negative 

values, or will descend from left to right, as in the 

Figure. 

Let us illustrate this hy working out a particular 

instance. Taking the equation 

y=ix^-h3, 

and differentiating it, we get 

% 
dx 

X. 

Now assign a few successive values, say from 0 to 

5, to x; and calculate the corresponding values of y 

by the first equation; and of ^ from the second 
CtOO 

equation. Tabulating results, we have: 

X 0 1 2 3 4 6 

V 3 3j 4 5J 

dx 
0 1 

2 1 2 2|- 

Then plot them out in two curves. Figs. 23 and 24 

in Fig. 23 plotting the values of y against those of x 

and in Fig. 24 those of ^ against those of x. For 
(ajOG 
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any assigned value of x, the height of the ordinate 

in the second curve is proportional to the slope of the 

first curve. 

If a curve comes to a sudden cusp, as in Fig. 25, 

the slope at that point suddenly changes from a slope 

upward to a slope downward. In that case ^ will 

clearly undergo an abrupt change from a positive to 

a negative value. 
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The following examples show further applications 

of the principles just explained. 

(4) Find the slope of the tangent to the curve 

at the point where a? = — ]. Find the angle which this 

tangent makes with the curve ^ = 2®^+ 2. 

The slope of the tangent is the slope of the curve at 

the point where they touch one another (see p. 77); 

that is, it is the of the curve for that point. Here 
^ dx ^ 

slope of the tangent and of the curve at that point. 

The tangent, being a straight line, has for equation 

= aa? + 6, and its slope is ^ = a, hence a = — i. Also 

x=—I, ^ = 2^-—yy + 3 = ; and as the tangent 

passes by this point, the coordinates of the point must 

satisfy the equation of the tangent, namely 

y 

if 

1 
y=-~x+h, 

so that 2J=—|x( —1) + & and 6 = 2; the equation of 

the tangent is therefore y = — + '2.. 
Zt 

Now, when two curves meet, the intersection being 

a point common to both curves, its coordinates must 

satisfy the equation of each one of the two curves; 
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that is, it must be a solution of the system of simul¬ 
taneous equations formed by coupling together the 
equations of the curves. Here the curves meet one 
another at points given by the solution of 

f y=2x^ + 'i, 
\y=—^x + ‘2. or 2a?^ + 2= —|a?-l-2; 

that is, x(2x + i) = 0. 

This equation has for its solutions *‘ = 0 and x = — I- 
The slope of the curve y=‘2x'^ + 2 at any point is 

For the point where x = 0, this slope is zero; the curve 
is horizontal. For the point where 

1 dy _ 
4’ dx^ 

X— •1 

hence the curve at that point slopes downwards to 
the right at such an angle Q with the horizontal that 

tan 0 = 1; that is, at 4.5° to the horizontal. 
The slope of the straight line is — |; that is, it slopes 

downwards to the right and makes with the horizontal 
an angle (p such that tan <p = \ ', that is, an angle of 
26° 34'. It follows that at the first point the curve 
cuts the straight line at an angle of 26° 34', while at 
the second it cuts it at an angle of 45° — 26° 34' = 18° 26', 

(5) A straight line is to be drawn, through a point 
whose coordinates are x = 2,y= —1, m tangent to the 

curve y — 3(?‘ — hx-\-^. Find the coordinates of the 
point of contact. 
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The slope of the tangent must be the same as the 

~ of the curve; that is, 2x — o. 
ax 

The equation of the straight line is y = ax + h, and 

as it is satisfied for the values x = 2, y=—l, then 

— l = ax2 + &; also, its ^^ = a = 2a?—5. 

The X and the y of the point of contact must also 

satisfy both the equation of the tangent and the 

equation of the curve. 

We have then 
y = X^^ — ?>x + Q,.(i) 

y = ax + h, .i.(ii) 

-l = 2a + 6, .(hi) 

a = 2x-5, .(iv) 

four equations in a, b, x, y. 

Equations (i) and (ii) give x^ — ?>x + Q = ax+h. 

Replacing a and b by their value in this, we get 

x'^-5x + Q = {2x-b)x-l-2{2x-b), 

which simplifies to — 4.'3j + 3 = 0, the solutions of 

which are: £c = 3 and x — 1. Replacing in (i), we get 

y — 0 and y = 2 respectively; the two points of contact 

are then x = l, y=2, and x = ^, y = 0. 

Note.—In all exercises dealing with curves, students 

will find it extremely instructive to verify the deduc¬ 

tions obtained by actually plotting the curves. 
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Exercises VIII. (See page 257 for Answers.) 

(1) Plot the curve y = ^x^ — 5, using a scale of 

millimetres. Measure at points corresponding to 

different values of x, the angle of its slope. 

Find, by differentiating the equation, the expression 

for slope, and see, from a Table of Natural Tangents, 

whether this agrees with the measured angle. 

(2) Find what will be the slope of the curve 

y = 0T2a?® —2, 

at the particular point that has as abscissa x = 2. 

(3) If y = {x — a){x — h), show that at the particular 

point of the curve where ^ = 0, as' will have the value 

i(a+&). 
dy 

(4) Find the of the equation y — + and 

calculate the numerical values of ^ for the points 
(A/X 

corresponding to x = 0, x — ^, x=l, x = 2. 

(5) In the curve to which the equation is 5?^ +2/^ = 4, 

find the values of x at those points where the slope = 1. 

(6) Find the slope, at any point, of the curve whose 

equation is p+^=l; and give the numerical value 

of the slope at the place where x = 0, and at that 

where x=l. 

(7) The equation of a tangent to the curve 

y= 5 — 2x+0‘5x^, being of the form y = mx-\-n, where 

m and n are constants, find the value of m and n if 
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the point where the tangent touches the curve has 

a; = 2 for abscissa. 

(8) At what angle do the two curves 

2/ = 3’5a;^ + 2 and y = gB^ — 5x+9'5 

cut one another ? 

(9) Tangents to the curve 2/= +\/25 — x^ are drawn 

at points for which x = S and x — i. Find the co¬ 

ordinates of the point of intersection of the tangents 

and their mutual inclination. 

(10) A straight line y = 2x — h touches a curve 

y = '5x^ + 2 at one point. What are the coordinates 

of the point of contact, and what is the value of & ? 



CHAPTEE XL 

MAXIMA AND MINIMA. 

One of the principal uses of the process of differen¬ 

tiating is to find out under what conditions the value 

of the thing differentiated becomes a maximum, or a 

minimum. This is often exceedingly important in 

engineering questions, where it is most desirable to 

know what conditions will make the cost of working 

a minimum, or will make the efficiency a maximum. 

Now, to begin with a concrete case, let us take the 

equation y = 9p‘ — ^x-\-*l. 

By assigning a number of successive values to x, 

and finding the corresponding values of y, we can 
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readily see that the equation represents a curve with 

a minimum. 

X 0 1 2 3 4 5 

y 7 4 3 4 7 12 

These values are plotted in Fig. 26, which shows 

that y has apparently a minimum value of 3, when x 

is made equal to 2. But are you sure that the 

minimum occurs at 2, and not at or at If ? 

Of course it would he possible with any algebraic 

expression to work out a lot of values, and in this 

way arrive gradually at the particular value that 

may be a maximum or a minimum. 

Here is another example; 

Let y = ^x—x\ 

Calculate a few values thus : 

X -i 0 1 2 3 4 5 

V -4 0 2 2 0 -4 

O
 1 
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Plot these values as in Fig, 27. 

It will be evident that there will be a maximum 

somewhere between x=l and ®=2; and the thing 

looks as if the maximum value of ^ ought to be 

about 2|. Try some intermediate values. If x=l\, 

y = 2'187; if ®=1|, «/ = 2-25: if x=l-6, «/ = 2-24 

How can we be sure that 2'25 is the real maximum, 

or that it occurs exactly when x=l^l 

Now it may sound like juggling to be assured that 

there is a way by which one can arrive straight at a 

maximum (or minimum) value without making a lot of 

preliminary trials or guesses. And that way depends 

on differentiating. Look back to an earlier page (81) for 

the remarks about Figs. 14 and 15, and you will see 

that whenever a curve gets either to its maximum 

or to its minimum height, at that point its ^ = 0. 

Now this gives us the clue to the dodge that is 

wanted. When there is put before you an equation, 

and you want to find that value of x that will make 

its y a minimum (or a maximum), first differentiate 

it, and having done so, write its as equal to zero, 

and then solve for x. Put this particular value of x 

into the original equation, and you will then get the 

required value of y. This process is commonly called 

“ equating to zero.” 

To see how simply it works, take the example with 

which this chapter opens, namely 

2/=£c® —4a3+7. 
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Differentiating; we get: 

dy 
dx 

= 2a5—4. 

Now equate this to zero, thus: 

2^3 — 4 = 0. 

Solving this equation for x, we get: 

2a?=4, 

a? = 2. 

Now, we know that the maximum (or minimum) 

will occur exactly when a? =2. 

Putting the value a? = 2 into the original equation, 

we get 2/ = 22~(4x2) + 7 

=4-8+7 

= 3. 

Now look back at Fig 26, and you will see that the 

minimum occurs when a? = 2, and that this minimum 

of 2/=3. 

Try the second example (Fig. 24), which is 

y = Zx — x^. 

Differentiating, ^ = 3 — 2a?. 
(ajQG 

Equating to zero, 

3 —2a3 = 0, 

whence a?=lj; 

and putting this value of a? into the original equation, 

we find: ^ = 4i-(l|x 1|), 

y = ^\. 

This gives us exactly the information as to which 

the method of trying a lot of values left us uncertain. 
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Now, before we go on to any further cases, we have 

two remarks to make. When you are told to equate 

^ to zero, you feel at first (that is if you have any 

wits of your own) a kind of resentment, because you 

know that ^ has all sorts of different values at 
ax 

different parts of the curve, according to whether it 

is sloping up or down. So, when you are suddenly 

told to write 

you resent it, and feel inclined to say that it can’t be 

true. Now you will have to understand the essential 

difference between “an equation,” and “an equation 

of condition.” Ordinarily you are dealing with equa¬ 

tions that are true in themselves, but, on occasions, 

of which the present are examples, you have to write 

down equations that are not necessarily true, but are 

only true if certain conditions are to be fulfilled; and 

you write them down in order, by solving them, to 

find the conditions which make them true. Now we 

want to find the particular value that x has when 

the curve is neither sloping up nor sloping down, that 

dy _ 
is, at the particular place where 

dx 
= 0. 

^- = 0 does not mean that it always is 
dx 

So, writing 

= 0; but you 

write it down as a condition in order to see how 

much X will come out if ^ is to be zero. 
dx 

O.M.E. 
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The second remark is one which (if you have any 

wits of your own) you will probably have already 

made; namely, that this much-belauded process of 

equating to zero entirely fails to tell you whether 

the X that you thereby find is going to give you 

a maximum value of or a minimum value of y. 

Quite so. It does not of itself discriminate; it finds 

for you the right value of x but leaves you to find 

out for yourselves whether the corresponding is a 

maximum or a minimum. Of course, if you have 

plotted the curve, you know already which it will be. 

For instance, take the equation: 

y- = 4a5-l--. 
X 

Without stopping to think what curve it corre¬ 

sponds to, differentiate it, and equate to zero: 

dy . „ . 1 

dx 
■x~ i = 4- 

X- 
:=0; 

whence x—\\ 

and, inserting this value, 

«/ = 4 

will be either a maximum or else a minimum. But 

which ? You will hereafter be told a way, depending 

upon a second differentiation, (see Chap. XII., p. 112). 

But at present it is enough if you will simply try 

any other value of x differing a little from the one 

found, and see whether with this altered value the 

corresponding value of y is less or greater than that 

already found. 
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Try another simple problem in maxima and minima. 

Suppose you were asked to divide any number into 

two parts, such that the product was a maximum ? 

How would you set about it if you did not know 

the trick of equating to zero ? I suppose you could 

worry it out by the rule of try, try, try again. Let 

60 be the number. You can try cutting it into two 

parts, and multiplying them together. Thus, 60 times 

10 is 500; 52 times 8 is 416 ; 40 times 20 is 800; 45 

times 16 is 675 ; 30 times 30 is 900. This looks like 

a maximum: try varying it. 31 times 29 is 899, 

which is not so good; and 32 times 28 is 896, which 

is worse. So it seems that the biggest product will 

be got by dividing into two equal h§,lves. 

Now see what the calculus tells you. Let the 

number to be cut into two parts be called n. Then 

if X is one part, the other will be n — x, and the product 

will be x{n~x') or nx — x^. So we write y = nx — x^. 

Now differentiate and equate to zero; 

^ = 2aj=0. 
ax 

Solving for x, we get ^ = x. 

So now we know that whatever number n may be, 

we must divide it into two equal parts if the product 

of the parts is to be a maximum ; and the value of 

that maximum product will always be = In^. 

This is a very useful rule, and applies to any number 

of factors, so that if m-\-n+p = Si constant number, 

mxnxp is a maximum when m = n=p. 
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Test Case. 

Let us at once apply our knowledge to a case that 

we can test. 

Let y = x^ — x-, 

and let us find whether this function has a maximum 

or minimum; and if so, test whether it is a maximum 

or a minimum. 

Differentiating, we get 

dy 

dx 
2a?—1, 

Equating to zero, we get 

2,* — 1 = 0, 

whence 2a? = 1, 

or x = \. 

That is to say, when x is made = the corresponding- 

value of y will be either a maximum or a minimum. 

Accordingly, putting a? = ^ in the original equation, we 

or y=-\- 

Is this a maximum or a minimum ? To test it, try 

putting X a little bigger than say, make a? = 0’6. 

Then = (0-6)2-0-6 = 0-36-0-6-= _o-24, 

which is higher up than — 0-25; showing that 

Y/ = — 0'25 is a minimum. 

Plot the curve for yourself, and verify the cal¬ 

culation. 
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Further Examples. 

A most interesting example is afforded by a curve 

that has both a maximum and a minimum. Its 

equation is: i^.3_2a;2 + 3a;+l. 

Now ^ = 

X 

Fig. 28. 

Equating to zero, we get the quadratic, 

—4a?+3 = 0; 

and solving the quadratic gives us two roots, viz. 

/a; = 3 

1.® = 1. 

Now, when a? = 3, y = l\ and v^hen x=l, ?/ = 2J, 

The first of these is a minimum, the second a 

maximum. 

The curve itself may he plotted (as in Fig. 28) 
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from the values calculated, as below, from the 

original equation. 

X -1 0 1 2 3 4 5 6 

V 1 IS 1 2i n 19 

A further exercise in maxima and minima is 

afforded by the following example; 

The equation to a circle of radius r, having its 

centre C at the point whose coordinates are x = a, 

y = h, as depicted in Fig. 29, is: 

{y — hy+ix—= r^. 

This may be transformed into 

y = s/r'^ — {x — af‘^h. 

Fig. 29. 

Now we know beforehand, by mere inspection of 

the figure, that when x — a,y will be either at its 

maximum value, b + r, or else at its minimum 

value, h — r. But let us not take advantage of this 
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knowledge; let us set about finding what value 

of X will make y a maximum or a minimum, by the 

process of differentiating and equating to zero. 

dy I 1 

dx~ 2 s/r'-' — ix — ay 
x(2a—2a?), 

which reduces to 

dy _ a—x 

dx s/r‘^—{x — df 

Then the condition for y being maximum 

minimum is: 
a—x 

Kjr“ — (x — ay 
= 0. 

or 

Since no value whatever of a? will make the de¬ 

nominator infinite, the only condition to give zero is 

x = a. 

Inserting this value in the original equation for 

the circle, we find _ 

and as the root of is either d-r or — r, we have 

two resulting values of y, 

(y — h+T 

\y = h—r. 

The first of these is the maximum, at the top; 

the second the minimum, at the bottom. 
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If the curve is such that there is no place that is a 

maximum or minimum, the process of equating to 

zero will yield an impossible result. For instance: 

Let y = aoi^+bx+c. 

Then ^=r.^ax^ + h. 
ax 

Equating this to zero, we get Zax^ + h — 0, 

= and which is impossible. 

Therefore y has no maximum nor minimum. 

A few more worked examples will enable you to 

thoroughly master this most interesting and useful 

application of the calculus. 

(1) What are the sides of the rectangle of maximum 

area inscribed in a circle of radius R ? 

If one side be called x, 

the other side = V(diagonal)^ —; 

and as the diagonal of the rectangle is necessarily a 

diameter, the other side = *>/4iB^ — x^. 

Then, area of rectangle S = x\/4<B^_—x^, 

X X 
ax ax dx 

If you have forgotten how to differentiate ij4sR‘^ — x'^, 

here is a hint: write ^R^ — x^ — w and y=ijw, and 

seek ^ and ^; fight it out, and only if you can’t 
dw dx j j 

get on refer to page 67. 
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You will get 

dx 
= xx 

•X^ sl'^li‘^ — X‘- 

For maximum or minimum we must have 

^W-’±x^ 

sJ'iW 

4S2 —2£c2 _ ^ _ 

that is, — 2,x'^ = 0 and x = I{,>J2. 

The other side =->^4122 — 2i?^ = JS v^2 , the two sides 

are equal; the figure is a square the side of which is 

equal to the diagonal of the square constructed on the 

radius. In this case it is, of course, a maximum with 

which we are dealing. 

(2) What is the radius of the opening of a conical 

vessel the sloping side of which has a- length I when 

the capacity of the vessel is greatest ? 

If R be the radius and // the corresponding height, 

H= J¥^K _ 

Volume F= X ttR^ X 
o o 

Proceeding as in the previous problem, we get 

R . 27rR 

dR 
tR‘^X 

■R^ 

27rR{l^-E^)-irR^ 

4—^ kJP — W' 

= 0 

for maximum or minimum. 

Or, 2TrR(l? —12^) — ttR"^ = 0, and R = hjf, for a maxi¬ 

mum, obviously. 
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(3) Find the maxima and minima of the function 

X , 4 — a? 
y—1-1-• 4—a? X 

We get 

dy _(^ — x) — {—x) —x — (4i — x)_ 

dx (4 —SI? ~ 

for maximum or minimum ; or 

lA ^ —Q and x=1. 
(4 — xY x^ 

There is only one value, hence only one maximum 

or minimum. 

For a? = 2, y = 2, 

for a? = 1-5, ^ = 2'27, 

for a; = 2-5, y=2-27; 

it is therefore a minimum. (It is instructive to plot 

the graph of the function.) 

(4) Find the maxima and minima of the function 

y = />/l+a?+v^l — X. (It will be found instructive to 

plot the graph.) 

Differentiating gives at once (see example No. 1, 

p. 68) 

^y_ 11 ^ 

dx 2x/l+a? 2s/l—x 

for maximum or minimum. 

Hence mJ\ +x= s/l — x and a? = 0, the only solution 

Fora? = 0, y=2. 

For a?= ±0'6, y=l'932, so this is a maximum. 
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(5) Find the maxima and minima of the function 

—5 

2a3 —4" 
We have 

dy _ (2a; —4) X 2a; — ii5)2 _ . 

dx ~ (2a; — 4)^ 

for maximum or minimum ; or 

2a;^ —8a;4-10_ „ 

(2a;-5)2 

or a;^ —4a; + 5 = 0; which has for solutions 

x = \-^sj — !• 

These being imaginary, there is no real value of x 

for which ^ = 0; hence there is neither maximum nor 
dx 

minimum. 

(6) Find the maxima and minima of the function 

{y — x‘‘‘'f = od‘. 

This may be written y — x^+x^. 

^ = 2a; + #a;^ = 0 for maximum or minimum: 
dx 

that is, a;(2+fa;^) = 0, which is satisfied for x = 0, 

and for 2 + fa;i = 0, that is for x = i%. So there are 

two solutions. 

Taking first a; = 0. If a; = — 0'5,2/ = 0'25 + 4/ — (’5)®, 

and if a;=+0'5, y = 0'25 + /^'5o. On one side y is 

imaginary; that is, there is no value of y that can be 

represented by a graph; the latter is therefore entirely 

on the right side of the axis of y (see Fig. 30). 

On plotting the graph it will be found that the 
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curve goes to the origin, as if there were a minimum 

tliere; but instead of continuing beyond, as it should 

do for a minimum, it retraces its steps (forming what 

is called a “ cusp ”). There is no minimum, therefore, 

although the condition for a minimum is satisfied, 

1 ^?/ A Ti • 
namely ~_o. it is necessary therefore always to 

check by taking one value on either side. 

Now, if we take x = J| = 0'64 I£x = 0'64,9/ = 0-7373 

and ;y = 0-0819; if a? = 0-6, ?/becomes 0-6389 and 0-0811; 

and, if ,^' = 0-7, becomes 0-8996 and 0-0804. 

This shows that there are two branches of the curve; 

the upper one does not pass through a maximum, but 

the lower one does. 

(7) A cylinder whose height is twice the radius of 

the base is increasing in volume, so that all its parts 
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keep always in the same proportion to each other; 

that is, at any instant, the cylinder is similar to the 

original cylinder. When the radius of the base is 

r feet, the surface area is increasing at the rate of 

20 square inches per second; at what rate is its 

volume then increasing ? 

Area = S=2(7r7‘^) + 27rrx 2r = 

Volume= V = X 2r= 2'7rr® 

dS dV „ , 

dr dr 

d8=\2Trr dr=20, dr = 
20 

12x1"' 

dV = (iirr^ dr = Oxr^ x 
12x1" 

= lOr. 

The volume changes at the rate of lOr cubic inches. 

Make other examples for yourself. There are few 

subjects which offer such a wealth for interesting 

examples. 

Exercises IX. (See page 258 for Answers.) 

(1) What values of x will make y a maximum 

... .. x‘^- 
and a minimum, if i/ = —' — ? 

x+1 

(2) What value of x will make y a maximum in 

OG 
the equation = 
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(3) A line of length p is to be cut up into 4 parts 

and put together as a rectangle. Show that the area 

of the rectangle will be a maximum if each of its 

sides is equal to \p. 

(4) A piece of string 30 inches long has its two 

ends joined together and is stretched by 3 pegs so 

as to form a triangle. What is the largest triangular 

area that can be enclosed by the string ? 

(5) Plot the curve corresponding to the equation 

10 , 10 . 
^ X 8 — a? ’ 

also find ^, and deduce the value of x that will 
ax 

make y a minimum; and find that minimum value 

of y. 

(6) If y = x^ — hx, find what values of x will make 

y a maximum or a minimum. 

(7) What is the smallest square that can be in¬ 

scribed in a given square ? 

(8) Inscribe in a given cone, the height of which 

is equal to the radius of the base, a cylinder 

(a) whose volume is a maximum; (b) whose lateral 

area is a maximum; (c) whose total area is a 

maximum. 

(9) Inscribe in a sphere, a cylinder (a) whose 

volume is a maximum; (b) whose lateral area is a 

maximum; (c) whose total area is a maximum. 
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(10) A spherical balloon is increasing in volume. 

If, when its radius is r feet, its volume is increasing 

at the rate of 4 cubic feet per second, at what rate is 

its surface then increasing ? 

(11) Inscribe in a given sphere a cone whose volume 

is a maximum. 

(12) The current G given by a battery of N similar 

voltaic cells is (7= 
nxE 

R+ 
rn‘ 

W 

, where E, R, r, are constants 

and n is the number of cells coupled in series. Find 

the proportion of re to iN for which the current is 

greatest. 



CHAPTER XII. 

CURVATURE OF CURVES. 

Returning to the process of successive differentia¬ 

tion, it may be asked; Why does anybody want to 

differentiate twice over? VVe know that when the 

variable quantities are space and time, by differ¬ 

entiating twice over we get the acceleration of a 

moving body, and that in the geometrical interpreta¬ 

tion, as applied to curves, ~ means the slope of the 

curve. But what can mean in this case ? Clearly 

it means the rate (per unit of length x) at which the 

slope is changing—in brief, it is a measure of the 

curvature of the slope. 

Suppose a slope constant, as in Fig, 31. 

Here, — is of constant value. 
dx 
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Suppose, however, a case in which, like Fig. 32, 

the slope itself is getting greater upwards,'’then 

dx ' dx^' positive. 

If the slope is becoming less as you go to the right 

(as in Fig. 14, p. 81), or as in Fig. 33, then, even 

though the curve may be going upward, since the 

change is such as to diminish its slope, its will 
be negative. 

It is now time to initiate you into another secret 

how to tell whether the result that you get by 

“ equating to zero ” is a maximum or a minimum. 

The trick is this: After you have differentiated 

(so as to get the expression which you equate to 

zero), you then differentiate a second time, and look 

whether the result of the second differentiation is 

positive or negative. If comes out positive, then 

you know that the value of y which you got was 

a minimum; but if comes out negative, then 

H C. M. E. 
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the value of y which you got must be a maximum. 
That’s the rule. 

The reason of it ought to be quite evident. Think 
of any curve that has a minimum point in it (like 

Fig. 15, p. 81), or like Fig. 34, where the point of 
minimum y is marked M, and the curve is concave 
upwards. To the left of M the slope is downward, 

that is, negative, and is getting less negative. To the 
right of M the slope has become upward, and is 

getting more and more upward. Clearly the change 
of slope as the curve passes through M is such that 

is positive, for its operation, as x increases toward 

the right, is to convert a downward slope into an 

upward one. 
Similarly, consider any curve that has a maximum 

point in it (like Fig. 16, p. 82), or like Fig. 35, where 
the curve is convex, and the maximum point is 

marked M. In this case, as the curve passes through 
M from left to right, its upward slope is converted 
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into a downward or negative slope, so that in this 

case the “ slope of the slope ” is negative. 

Go back now to the examples of the last chapter 

and verify in this way the conclusions arrived at as to 

whether in any particular case there is a maximum 

or a minimum. You will find below a few worked 

out examples. 

(1) Find the maximum or minimum of 

(a) y = 4‘X^-dx-Q, {h) y = Q + ^x-4sx^-, 

and ascertain if it be a maximum or a minimum in 

each case. 

(a) 

(6) 

dy 

dx 

dx? 

dx 

dy 

(Py 
da? 

= 8a? —9 = 0; a? = l|-; and —11-065. 

= 8, it is + ; hence it is a minimum. 

= 9 —8a? = 0; a? = li; and +11-065. 

= — 8 ; it is — ; hence it is a maximum. 

(2) Find the maxima and minima of the function 

y = a? — 'S>x+\&. 

^^ = 3a5^ —3 = 0; a? — !-, and£r=+l. 

= 6a?; for a? = 1; it is +; 

hence a?=l corresponds to a minimum ^=14. For 

01= —1 it is — , hence a? = — 1 corresponds to a maxi¬ 

mum ;i/= +18. 
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(3) Find the maxima and minima of y — 

dy _ (x^+2)xl—(x — l)x2x _ 2x — x^ + 2 _ „ . 
dx~ (,*2 + 2)2 (.*2 + 2)2 

or *2 — 2,* —2 = 0, whose solutions are *=+2’73 and 

x= -0-73. 

dh/ (,*2 + 2)2 X (2,* - 2) - (,*2 - 2x - 2)(4*^ + 8x) 

dx^~ (*2+2)^ 

2*® — 6,*‘‘ — 8*^ — 8*2 _ 24,* + 8 

The denominator is always positive, so it is sufficient 

to ascertain the sign of the numerator. 

If we put * = 2-73, the numerator is negative; the 

maximum, ^ = 0T83. 

If we put x= — 0'73, the numerator is positive ; the 

minimum, y— — 0'683. 

(4) The expense G of handling the products of a 

certain factory varies with the weekly output P 

according to the relation C=aP + ^^p + d, where 

a, h, e, d are positive constants. For what output 

will the expense be least ? 

dC n t ■ ■ • = -TW5 = 0 for maximum or minimum,, 
dP {c+py 

hence a- 
b 

{e+Pf 
and P - 

V a 
■e. 

lb 
As the output cannot be negative, P = + U — c. 

V (X/ 
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Now f£=+^i2^) 
dP^ ^ {c+Pf 

which is positive for all the values of P, hence 

P= — c corresponds to a minimum. 
» cc 

(5) The total cost per hour C of lighting a building 

with lamps of a certain kind is 

PPOA 

jmJ’ 

where Pis the commercial efficiency (watts per candle), 

P is the candle power of each lamp, 

t is the average life of each lamp in hours. 

Cl = cost of renewal in pence per hour of use, 

(7, = cost of energy per 1000 watts per hour. 

Moreover, the relation connecting the average life 

of a lamp with the commercial efficiency at which it 

is run is approximately ^ = where m and n are 

constants depending on the kind of lamp. 

Find the commercial efficiency for which the total 

cost of lighting will be least. 

We have C=n(^ 
\m 1000 / 

dC^PG, nCi 
dE 1000 m 

£r-(«+i)=o 

for maximum or minimum. 

„„+i^l000_x^ 
mPG, 

and E= 1 1000 xnGi 

mPCe 



118 CALCULUS MADE EASY 

This is clearly for minimum, since 

= (to+1) — 

which is positive for a positive value of E. 

For a particular type of 16 candle-power lamps, 

(7; = 17 pence, 0^ = 5 pence, and it was found that 

m=l() and n = S'6. 

E 

4 6 I 
1000x3-6x17 

10x16x5 
: 2-6 watts per candle-power. 

Exercises X. (You are advised to plot the graph 

of any numerical example.) (See p. 258 for the 

Answers.) 

(1) Find the maxima and minima of 

y = x^ + — 10a:; -t- 8. 

(2) Given y=^x — cx^, find expressions for and 

for , also find the value of x which makes y a 
dx^ 

maximum or a minimum, and show whether it is 

maximum or minimum. 

(8) Find how many maxima and how many minima 

there are in the curve, the equation to which is 

y-- 
qq4c 

and how many in that of which the equation is 

y- 
X‘‘ X* X'’ 

2 ■*'24 720' 



CURVATURE OF CURVES 119 

(4) Find the maxima and minima of 

5 
ii/ = 2a; + l+ -72- 

d(j 

(5) Find the maxima and minima of 

__ 

(6) Find the maxima and minima of 

_ 5® 

2 + ®^' 

(7) Find the maxima and minima of 

y= 

(8) Divide a number N into two parts in such a 

way that three times the square of one part plus 

twice the square of the other part shall be a 

minimum. 

(9) The elBciency u of an electric generator at 

different values of output x is expressed by the 

general equation; 
_ X . 

a+hx+cx^’ 

where a is a constant depending chiefly on the energy 

losses in the iron and c a constant depending chiefly 

on the resistance of the copper parts. Find an ex¬ 

pression for that value of the output at which the 

efficiency will be a maximum. 
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(10) Suppose it to be known that consumption of 

coal by a certain steamer may be represented by the 

formula ^ = 0-3 + 0-001«3; where y is the number of 

tons of coal burned per hour and v is the speed 

expressed in nautical miles per hour. The cost of 

wages, interest on capital, and depreciation of that 

ship are together equal, per hour, to the cost of 

1 ton of coal. What speed will make the total cost 

of a voyage of 1000 nautical miles a minimum ? 

And, if coal costs 10 shillings per ton, what will that 

minimfim cost of the voyage amount to ? 

(11) Find the maxima and minima of 

y- ±|vi(10-a;)'. 

(12) Find the maxima and minima of 

^+1. 



CHAPTER XIII. 

OTHER USEFUL DODGES. 

Partial Fractions. 

We have seen that when we differentiate a fraction 

we have to perform a rather complicated operation; 

and, if the fraction is not itself a simple one, the result 

is bound to be a complicated expression. If we could 

split the fraction into two or more simpler fractions 

such that their sum is equivalent to the original 

fraction, we could then proceed by differentiating 

each of these simpler expressions. And the result of 

differentiating would be the sum of two (or more) 

differentials, each one of which is relatively simple; 

while the final expression, though of course it will be 

the same as that which could be obtained without 

resorting to this dodge, is thus obtained with much 

less effort and appears in a simplified form. 

Let us see how to reach this result. Try first the 

job of adding two fractions together to form a resultant 

fraction. Take, for example, the two fractions —— 
2 £t? + l 

and Every schoolboy can add these together 

and find their sum to be And in the same 
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way he can add together three or more fractions. 

Now this process can certainly be reversed; that is to 

say, that if this last expression were given, it is certain 

that it can somehow be split back again into its 

original components or partial fractions. Only we do 

not know in every case that may be presented to us 

how we can so split it. In order to find this out 

we shall consider a simple case at first. But it is 

important to bear in mind that all which follows 

applies only to what are called “proper” algebraic 

fractions, meaning fractions like the above, which have 

the numerator of a lesser degree than the denominator; 

that is, those in which the highest index of x is less 

in the numerator than in the denominator. If we 

have to deal with such an expression as -j,—, we can 

simplify it by division, since it is equivalent to 

3 3 
l + -;2—T’ ~T2—T ^ proper algebraic fraction 

to which the operation of splitting into partial fractions 

can be applied, as explained hereafter. 

Case I. If we perform many additions of two or 

more fractions the denominators of which contain only 

terms in x, and no terms in x^, x^, or any other powers 

of X, we always find that the denominator of the final 

resulting fraction is the product of the denominators 

of the fractions which were added to form the result. 

It follows that by factorizing the denominator of this 

final fraction, we can find every one of the denomina¬ 

tors of the partial fractions of which we are in search. 
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Suppose we wish to go back from 
Sx+1 

w^-1 
to the 

components which we know are —- and —:r- If 
iX/ I 1 tX ~~ 1 

we did not know what those components were we can 

still prepare the way by writing: 

oX “b 1 3^ “b 1 
x^ — 1 {x+l){x — l) X+X x—\’ 

leaving blank the places for the numerators until we 

know what to put there. We always may assume the 

sign between the partial fractions to be plus, since, if 

it be minus, we shall simply find the corresponding 

numerator to be negative. Now, since the partial 

fractions are proper fractions, the numerators are 

mere numbers without x at all, and we can call them 

A, B, O ... as we please. So, in this case, we have: 

^X “b 1 
- + ■- 

B 

x^ — x x+l x—1 

If now we perform the addition of these two 

A(x-^^(x + l)^^ and 
(£t; + l)(a: —1) 

3x + l 

this partial fractions, we get 

must be equal to -^-nd, as the de¬ 

nominators in these two expressions are the same, 

the numerators must be equal, giving us; 

3x + l=A(x—l) + B(x + l). 

Now, this is an equation with two unknown 

quantities, and it would seem that we need another 

equation before we can solve them and find A and B. 
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But there is another way out of this difficulty. The 

equation must be true for all values of x\ therefore 

it must be true for such values of x as will cause 

x — \ and a?+l to become zero, that is for x = l and 

for x=—l respectively. If we make x = l, we get 

4 = (A X0)4-(i?x2), so that B=2\ and if we make 

x= —1, we get —2 = (A X — 2) + (i?X 0), so that A = l. 

Replacing the A and B of the partial fractions by 

these new values, we find them to become and 
2 aj+l 

-^; and the thing is done. 

As a farther example, let us take the fraction 

-ay-Q - y --5- The denominator becomes zero when 

X is given the value 1; hence x — 1 is a factor of it, 

and obviously then the other factor will be x‘^ + ^x+'8; 

and this can again be decomposed into (a3+l)(a; + 3). 

So we may write the fraction thus; 

4a;^ + 2a9 —14 _ A. -?_i ^ 
x^ + ox^—x — H x+1 x — \ aj+S’ 

making three partial factors. 

Proceeding as before, we find 

+ 2.* — 14 = A (a? — 1) (.-u+3)+i? (.-u +1) (a?+3) 

+ G{x+l){x—l). 

Now, if we make x — 1, we get: 

— 8 = (A X 0)+i?(2 X 4)+(Cx 0); that is, B= —1. 

If a3= — 1, we get 

— 12 = A( —2x2) + (i?xO) + (C'xO); whence A =3. 
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If a? = — 3, we get: 

16 = (H x0) + (i?x0)+(7( —2x — 4); whence 0=2. 

So then the partial fractions are: 

js_ 
33+1 33 —l~^a3 + 3’ 

which is far easier to differentiate with respect to w 
than the complicated expression from which it is 

derived. 

Case II. If some of the factors of the denominator 

contain terms in 33^, and are not conveniently put 

into factors, then the corresponding numerator may 

contain a term in x, as well as a simple number; and 

hence it becomes necessary to represent this unknown 

numerator not by the symbol A but by Ax + B\ the 

rest of the calculation being made as before. 

Try, for instance: 

— 33^ — 3 _Ax + B 0 . 
(,X‘^+1)(33+1)~' 33^ + 1 ”^33 + 1’ 

-x^-2. = {Ax+B){x+l)AC{x^Al). 

Putting .^•= —1, we get —4 = C'x2; and(7=—2; 

hence — x^ — ’i = { Ax+B){x-\-V) —2x^ — 2', 

and x^—l=Ax{x + l) + B{x + l). 

Putting 33 = 0, we get — 1 = i?; 

hence 

33^-1 =H»(33 + 1) —33 —1 ; or x^ + x = Ax{x+l)-, 

and 33+l=-d(*+l); 
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so that A = L a-nd the partial fractions are; 

a;— 1 2 

x^-i~ 

Take as another example the fraction 

— 2 
{x’^+\){x^ + 2)' 

We get 

_Ax-VB , Cfe+D 
(a;''^ + l)(a?'‘‘+2) **2 + 1 ^ 

_ (Aa?+5)(£i32+2)++.D)(,x‘2+1) 
(aj2+l)(a;2+2) 

In this case the determination of A, G,I) is not 

so easy. It will he simpler to proceed as follows: 

Since the given fraction and the fraction found by 

adding the partial fractions are equal, and have 

identical denominators, the numerators must also be 

identically the same. In such a case, and for such 

algebraical expressions as those with which we are 

dealing here, the coefficients of the same powevs of x 

are equal and of same sign. 

Hence, since 

oo^-^ = {Ax+B){x^+2)+{Cx+D){x^+1) 

= {A + 0)o(^+{B+D)x‘^+(2A + C)x+2B+D, 
we have l = A + (7; 0 = B+D (the coefficient of 

in the left expression being zero); 0 = 2A + C; and 

— 2 = 25+2). Here are four equations, from which 

we readily obtain A = -l; 5=-2; 0=2; D = 0; 

so that the partial fractions are + . 
*•2 + 2 x^+\ 
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This method can always be used; but the method 

shown first will be found the quickest in the case of 

factors in x only. 

Case III. When, among the factors of the denomi¬ 

nator there are some which are raised to some power, 

one must allow for the possible existence of partial 

fractions having for denominator the several powers 

of that factor up to the highest. For instance, in 

__ "4“ 1 
splitting the fraction allow for 

the possible existence of a denominator aj-f-l as well 

as {x + Vf and (a3~2). 

It maybe thought, however,that, since the numerator 

of the fraction the denominator of which is {x+lf 

may contain terms in x, we must allow for this in 

writing Ax + B for its numerator, so that 

3a;2-2a!-(-l Ax + B C D 

{x +1 )\x-2)“ {x+1)" '''x+l'^x-2' 

If, however, we try to find A, B, C and D in this case, 

we fail, because we get four unknowns; and we have 

only three relations connecting them, yet 

Sx“ — 2x + l x—l 

{x+l)%x-2) (a;-l-l)2 

But if we write 

+ 
1 

x+1 x—2 

2x‘^-2x+\ A B C 

{x+lf(x-2) {x+lf^x+l^x-2’ 

we get 

2ix‘^ — 2x+1 = A{x — 2)+B(x+V){x—2) + G{x+\y‘, 
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which gives (7 = 1 for a? = 2. Replacing C by its value, 

transposing, gathering like terms and dividing by 

w-2,we get -2x= A+B(x+1), which gives A = - 2 

for X— — 1. Replacing A by its value, we get 

2a^-=_24-i?(*'+l). 

Hence B=2; so that the partial fractions are; 

2 2 1 
x+1 {x + lf^x-2’ 

instead of + above as being 

the fractions from which ^ was obtained. 
{x+lf{x-2) 

The mystery is cleared if we observe that 

itself be split into the two fractions —^--—so 
X -f- 1 (ytf -f-1 )^’ 

that the three fractions given are really equivalent to 

x+l'^x+l {x+\f^ x-2 x+1 (£r+l)‘'^’^.'U-2’ 

which are the partial fractions obtained. 

We see that it is sufficient to allow for one numerical 

term in each numerator, and that we always get the 

ultimate partial fractions. 

When there is a power of a factor of x^ in the 

denominator, however, the corresponding numerators 

must be of the form Ax + B ; for example, 

_ Ax+B , Cx+D . E 
(2x!^ _ f)2 + -i+x+V 
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which gives 

Sx-l={Ax+B){x+1) 

+ {Cx+D){x+l){^x'^-l)+E{2x‘‘-lf. 

For x~ —1, this gives E= —4<. Replacing, trans¬ 

posing, collecting like terms, and dividing by x + 1, 
we get 

lQx^~lQx^+^ = 2Cx^ + 2Dx‘^+x{A-C)+{B-D). 

Hence 26^=16 and 0=8; 2D=-16 and D=-8; 

A — 0=0 or H — 8 = 0 and H =8 ; and finally,!? —D = 3 

or i? = — 5. So that we obtain as the partial fractions: 

8x-5 , 8(a3 —1) 4 
(2*2 -1)2 + "2*2 ZT “ ^+1 • 

It is useful to check the results obtained. The 

simplest way is to replace * by a single value, say 

-fl, both in the given expression and in the partial 

fractions obtained. 

Whenever the denominator contains but a power of 

a single factor, a very quick method is as follows: 

Taking, for example, x+l=z; then 
X = Z—1. V w 1 

Replacing, we get 

4(z-l)+l_4z-3_ 4 3 

z^ z^ z^' 

The partial fractions are, therefore, 

4 3 

(*-fl)2 (*-fl)s' 
0. M.E. 



130 CALCULUS MADE EASY 

Application to differentiation, 

to differentiate y = ^^7^3; 

Let it be required 

we have 

dy _ (Qx^+lx—'S) x4 + (5 —4£r)(12a3+7) 
dx (Qx‘^ + Tx — 'Sf 

24a;2-60*-23 
“ {Qx'^+lx-'Af' 

If we split the given expression into 

1 2 

3;b-1 2it; + 8’ 
we get, however, 

dy 3 4 

dx^ (^x-lf^{2x + 3f’ 

which is really the same result as above split into 

partial fractions. But the splitting, if done after 

differentiating, is more complicated, as will easily be 

seen. When we shall deal with the integration of 

such expressions, we shall find the splitting into 

partial fractions a precious auxiliary (see p. 230). 

Exercises XI. (See page 259 for Answers.) 

Split into fractions; 

(1) 
3a?+ 5 

(2) 
3a,--4 

{x — 3) {ijo + 4) (a? —l)(a? —2) 

(3) 
Sit* 4-5 

(4) 
a?+l 

x!^ + x—12 a?2-7a; + 12 

(5) 
a? —8 

(6) 
a?^ — 13a?+26 

{2x+-i){ix-2) (a? — 2)(a? — 3)(a? — 4) 
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(7) 
w^ — Sx+1 

(c(^—1)(£g + 2)(w-S)' 

('81 5,x'H7a;+l 
'' (2® + l)(3£c-2)(3a;+l)’ 

(9) 

(11) 

(13) 

(15) 

(17) 

w‘^ — 1 

_53"/ +6a?+4 
(a? + l){au^+ X +1) 

X 

(a?^ —l)(a?H-l) 

3.'KH2a? + l 

{x+2){x‘^ + x+1Y 

7a?^+9a? —1 
”(3a)Lr2y“‘ 

(10) 

(12) 

(14) 

(16) 

(18) 

a?^+l 
a?*® + l 

a? 

{x-l){x-2f 

a? + 3 

(,x' + 2)^(a? — 1) 

5a?^ + 8a? —12 
(a?+ 4)3 

(a?3-8)(^L^‘ 

Differential of an Inverse Function. 

Consider the function (see p. 14) y = 2>x\ it can be 

expressed in the form a? = |; this latter form is called 

the inverse function to the one originally given. 

II |/ = 3a?, ^=3; if x = % ^ = 1 and we see that 

dy dx 

dx 

dy 1 

dx dx 

dy 

or 
dx ^ dy 

Consider y = 4a?^, ™ = 8a?; the inverse function is 

a? = ~ and 
dx 

dy ^Jy 4x2a?' ’8a? 
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Here again 
dy dx 

dx dy 

It can be shown that for all functions which can be 

put into the inverse form, one can always write 

—X ^ — 1 or ^ 
dx dy dx dx 

dy 

It follows that, being given a function, if it be 

easier to differentiate the inverse function, this may 

be done, and the reciprocal of the differential coefficient 

of the inverse function gives the differential coefficient 

of the given function itself. 

As an example, suppose that we wish to differentiate 

U3 
y='\j — —l. We have seen one way of doing this, 

by writing u = ~ — l, and finding ^ and This 
. ^ X ^ du dx 

gives 

dy _ 3 

dx R 
2x\~-l 

V X 

If we had forgotten how to proceed by this method, 

or wished to check our result by some other way of 

obtaining the differential coefficient, or for any other 

reason we could not use the ordinary method, we can 

3 
proceed as follows; The inverse function is = -s- 

1+1/2 

dx 3 X 21/ _ <oy 
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hence 

dy _ 1 

dx dx 

dy 

Qy 

8 

2x^ 
3 
X 

1 

Let us take as an other example y-= 
4/(9 + ; 

The inverse function is0=—-5 ov d = y-^-5, and 

dy 

It follows that 

r 
= -8«/-^=-8^'(0+5)t 

been found otherwise. 

We shall find this dodge most useful later on; 

meanwhile you are advised to become familiar with 

it by verifying by its means the results obtained in 

Exercises I. (p. 26), Nos. 5, 6, 7; Examples (p. 68), 

Nos. 1, 2, 4 ; and Exercises VI. (p. 78), Nos. 1, 2, 3 

and 4. 

You will surely realize from this chapter and the 

preceding, that in many respects the calculus is an 

art rather than a science \ an art only to be acquired, 

as all other arts are, by practice. Hence you should 

work many examples, and set yourself other examples, 

to see if you can work them out, until the various 

artifices become familiar by use. 



CHAPTER XIV. 

ON TRUE COMPOUND INTEREST AND THE 

LAW OF ORGANIC GROWTH. 

Let there be a quantity growing in such a way that 

the increment of its growth, during a given time, 

shall always be proportional to its own magnitude. 

This resembles the process of reckoning interest on 

money at some fixed rate: for the bigger the capital, 

the bigger the amount of interest on it in a given 

time. 

Now we must distinguish clearly between two 

cases, in our calculation, according as the calculation 

is made by what the arithmetic books call “simple 

interest,” or by what they call “compound interest.” 

For in the former case the capital remains fixed, 

while in the latter the interest is added to the cap¬ 

ital, which therefore increases by successive additions. 

(1) At simple interest. Consider a concrete case. 

Let the capital at start be £100, and let the rate 

of interest be 10 per cent, per annum. Then the 

increment to the owner of the capital will be £10 

every year. Let him go on drawing his interest 

every year, and hoard it by putting it by in a 
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stocking, or locking it up in his safe. Then, if he 

goes on for 10 years, by the end of that time he will 

have received 10 increments of £10 each, or £100, 

making, with the original £100, a total of £200 in all. 

His property will have doubled itself in 10 years. 

If the rate of interest had been 5 per cent., he would 

have had to hoard for 20 years to double his property. 

If it had been only 2 per cent., he would have had 

to hoard for 50 years. It is easy to see that if the 

value of the yearly interest is i of the capital, he 

must go on hoarding for n years in order to double 

his property. 

Or, if y be the original capital, and the yearly 

interest is then, at the end of n years, his property 

w 
will be y-{-n-^ = 2y. 

(2) At compound interest. As before, let the owner 

begin with a capital of £100, earning interest at the 

rate of 10 per cent, per annum; but, instead of 

hoarding the interest, let it be added to the capital 

each year, so that the capital grows year by year. 

Then, at the end of one year, the capital will have 

grown to £110; and in the second year (still at 10 %) 

this will earn £11 interest. He will start the third 

year with £121, and the interest on that will be 

£12. 2s.; so that he starts the fourth year with 

£133. 2s., and so on. It is easy to work it out, and 

find that at the end of the ten years the total capital 
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will have grown to £259. 7s. Qd. In fact, we see that 

at the end of each year, each pound will have earned 

yV of a pound, and therefore, if this is always added 

on, each year multiplies the capital by ; and if 

continued for ten years (which will multiply by this 

factor ten times over) will multiply the original 

capital by 2'59375. Let us put this into symbols. 

Put for the original capital; - for the fraction 
Kh 

added on at each of the n operations; and for the 

value of the capital at the end of the iiP' operation. 

Then = + IJ*. 

But this mode of reckoning compound interest once 

a year, is really not quite fair; for even during the 

first year the £100 ought to have been growing. At 

the end of half a year it ought to have been at least 

£105, and it certainly would have been fairer had 

the interest for the second half of the year been 

calculated on £105. This would be equivalent to 

calling it 5 % per half-year; with 20 operations, there¬ 

fore, at each of which the capital is multiplied by f^. 

If reckoned this way, by the end of ten years the 

capital would have grown to £265. 8s.; for 

(l + ^or = 2-654. 

But, even so, the process is still not quite fair; for, 

by the end of the first month, there will be some 

interest earned ; and a half-yearly reckoning assumes 

that the capital remains stationary for six months at 
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a time. Suppose we divided the year into IQ parts, 

and reckon a one-per-cent, interest for each tenth of 

the year. We now have 100 operations lasting over 

the ten years, or 

2/„ = £100(l-l-T^^r; 

which works out to £270. 8s. 

Even this is not final. Let the ten years he divided 

into 1000 periods, each of of a year; the interest 

being per cent, for each such period; then 

yn^£100 

which works out to £271. 14s. 2|c?. 

Go even more minutely, and divide the ten years 

into 10,000 parts, each ywwv of a year, with interest 

at y-J-g- of 1 per cent. Then 

i/n=£ioo 

which amounts to £271. 16s. 4(7. 

Finally, it will be seen that what we are trying to 

find is in reality the ultimate value of the expression 

/ 1\® 
(^1-t-—j , which, as we see, is greater than 2; and 

which, as we take n larger and larger, grows closer 

and closer to a particular limiting value. However 

big you make n, the value of this expression grows 

nearer and nearer to the figure 

2'71828... 

a number never to he forgotten. 

Let us take geometrical illustrations of these things. 

In Fig. 36, OP stands for the original value. OT is 
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the whole time during which the value is growing. 

It is divided into 10 periods, in each of which there is 

an equal step up. Here ^ is a constant; and if each 
ax 

step up is tV of the original OP, then, by 10 such 

steps, the height is doubled. If we had taken 20 steps. 

each of half the height shown, at the end the height 

would still be just doubled. Or n such steps, each 

of - of the original height OP, would suffice to 
'Yb 

double the height. This is the case of simple interest. 

Here is 1 growing till it becomes 2. 

In Fig. 37, we have the corresponding illustration of 

the geometrical progression. Each of the successive 

ordinates is to be 1 + that is, times as hiffh as 
' n n ^ 

its predecessor. The steps up are not equal, because 

1 
each step up is now — of the ordinate at that part of 

the curve. If we had literally 10 steps, with (I+Jq) 

for the multiplying factor, the final total would be 
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(l+yVy® or 2'593 times the original 1. But if only 
we take n sufficiently large (and the corresponding 
1 . / 1\“ 
- sufficiently small), then the final value to 

which unity will grow will be 271828. 

Epsilon. To this mysterious number 27182818 
etc., the mathematicians have assigned as a symbol 
the Greek letter e (pronounced epsilon). All school¬ 
boys know that the Greek letter tt (called pi) stands 
for 3Tljl592 etc.; but how many of them know that 
epsilon means 271828 ? Yet it is an even more 
important number than tt ! 

What, then, is epsilon ? 
Suppose we were to let 1 grow at simple interest 

till it became 2; then, if at the same nominal rate of 
interest, and for the same time, we were to let 1 grow 
at true compound interest, instead of simple, it would 
grow to the value epsilon. 

This process of growing proportionately, at every 
instant, to the magnitude at that instant, some people 
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call a logarithmic rate of growing. Unit logarithmic 

rate of growth is that rate which in unit time will 

cause 1 to grow to 2-718281. It might also be 

called the organic rate of growing; because it is 

characteristic of organic growth (in certain circum¬ 

stances) that the increment of the organism in a 

given time is proportional to the magnitude of the 

organism itself. 

If we take 100 per cent, as the unit of rate, 

and'any fixed period as the unit of time, then the 

result of letting 1 grow arithmetically at unit rate, 

for unit time, will be 2, while the result of letting 1 

■grow logarithmically at unit rate, for the same time, 

will be 2-71828.... 

A little more about Epsilon. We have seen that 

we require to know what value is reached by the 

expression = when becomes indefinitely 

great. Arithmetically, here are tabulated a lot of 

values (which anybody can calculate out by the help 

of an ordinary table of logarithms) got by assuming 

n = 2; n = 5; n = lQ; and so on, up to n = 10,000. 

(1+iy = 2-25. 

(1+1/ = 2-489. 

(1+tV)“ = 2-594. 

= 2-653. 

(i+xior = 2-704. 

(l + iolo)™" = 2-7171. 

2-7182. 
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It is, however, worth while to find another way of 

calculating this immensely important figure. 

Accordingly, we will avail ourselves of the binomial 

theorem, and expand the expression in that 

well-known way. 

The binomial theorem gives the rule that 

(a-f &)”■ = a”-f-^ jO*'— 1) 
LA 

„n-3jr.3 

—1)(» —2)—g-hetc. 

Putting a = 1 and b= , we get 

/ IN'* 1 
l + -i =n-l-l- - 

nJ 

!n — 

12 \ n 

1 (re — 

+ 
1 (re —l)(re —2) 

[i 

l){n — 2){n- 

n" 

■3) 

A re" 
-fete. 

Now, if we suppose re to become indefinitely great, 

say a billion, or a billion billions, then re — 1, re — 2, 

and re —3, etc., will all be sensibly equal to re; and 

then the series becomes 

e=l+l+ -fete.... 

By taking this rapidly convergent series to as 

many terms as we please, we can work out the sum to 

any desired point of accuracy. Here is the working 

for ten terms: 
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i-oooooo 
dividing by 1 1'000000 

dividing by 2 0'500000 

dividing by 3 0'166667 

dividing by 4 0'041667 

dividing by 5 0'008333 

dividing by 6 0'001389 

dividing by 7 0'000198 

dividing by 8 0 000025 

dividing by 9 0'000002 

Total 2-718281 

e is incommensurable with 1, and resembles tt in 

being an interminable non-recurrent decimal. 

The Exponential Series. We shall have need of yet 

another series. 

Let us, again making use of the binomial theorem, 

l+-j , which is the same 

as e® when we make n indefinitely great. 

\nJ 
e®=l'“*-l-»»—-\-nx{nx—l) j-^ 

+nx{nx — l){nx—'2.)-p--1- etc. 
Ui 

1 , , 1 n^x^—nx 
= 1 +x+^---- 

n^x^ — Sn^x^ + 2nx 
-fete. 
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= 1 
X‘' 

+a?+- 

X 

11 
of 

+- 

2x 

n '^11? 

\1 
+ etc. 

But, when n is made indefinitely great, this 

simplifies down to the following : 

/y»2 /y»3 

6*= 1+a? ++ j-^ + etc.... 

This series is called the exponential series. 

The great reason why e is regarded of importance 

is that e® possesses a property, not possessed by any 

other function of x, that when you differentiate it 

its value remains unchanged; or, in other words, its 

differential coefficient is the same as itself. This can 

be instantly seen by differentiating it with respect 

to X, thus: 

dx 
= 0 + 1 + 

2x 

R2 
+ 1-2-3 + 

4X® 

1-2-3.4 

I 
1 2 • 3 • 4 • 5 

+ etc. 

or = i+x+ 
/v*2 /vj3 

.2-3 

OG^ 

1-2-3-4 
f etc., 

which is exactly the same as the original series. 

Now we might have gone to work the other way, 

and said: Go to; let us find a function of x, such 

that its differential coefficient is the same as itself. 

Or, is there any expression, involving only powers 
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of X, which is unchanged by differentiation ? Accord- 

ingly> let us assume as a general expression that 

y —A + Bx+Cx‘^+Dx^A Ex'^+etc., 

(in which the coefficients A, B, G, etc. will have to be 

determined), and differentiate it. 

^ = B+2Gx + 2Dx^+4^Ex^+etc. 
(a/Ou 

Now, if this new expression is really to be the same 

as that from which it was derived, it is clear that 

A must =B; that G=^=.r^ ; that D — ^ ^ ' 

thati?=^ = j-^^, etc. 

The law of change is therefore that 

/V» /y»3 
A I 1 , •A' , tAj , tAJ 

2/ = ^ il+Y+]^ + 2 
x^ 

2-3 ' 1.2-3-4 
+ etc. )• 

If, now, we take A = 1 for the sake of further 

simplicity, we have 

/y» /V<2 
1 *AJ lAj tAj 

= ^ + l + r:2 + U2T., 7,+ 
x* 

1-2- 
r + etc. 

Differentiating it any number of times will give 

always the same series over again. 

If, now, we take the particular case of A = 1, and 

evaluate the series, we shall get simply 

when x = l, ?/= 2-718281 etc.; that is, y = e\ 

when x = 2, y = (2-718281 etc.f; that is, y = e^ 

when x — 3, 2/ = (2-718281 etc.)3; that is, ?/ = e® 
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and therefore 

when x = x, 2/ = (2‘718281 etc.)® 

thus finally demonstrating that 

that is, y- 

/vj /y>2 /y»4 

) + 2.3 ' 1.2 • 3 • 4 
+ etc. 

[Note.—How to read exponentials. For the benefit 

of those who have no tutor at hand it may be of use 

to state that e® is read as “ epsilon to the eksth power; ” 

or some people read it “exponential eks.” So is 

read “ epsilon to the pee-teeth-power ” or “ exponential 

pee tee.” Take some similar expressions;—Thus, e"^ is 

read “ epsilon to the minus two power ” or “exponential 

minus two.” is read “epsilon to the minus 

ay-eksth ” or “ exponential minus ay-eks.”^ 

Of course it follows that remains unchanged if 

differentiated with respect to y. Also e“®, which is 

equal to (e®)®, will, when differentiated with respect 

to X, be (Te“®, because (* is a constant. 

Natural or Naperian Logarithms. 

Another reason why e is important is because it 

was made by Napier, the inventor of logarithms, the 

basis of his system. If y is the value of e®, then x 

is the logarithm, to the base e, of y. Or, if 

^ = e®, 

then x = \og,y. 

The two curves plotted in Figs. 38 and 39 represent 

these equations. 
C.M.E. K 
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The points calculated are: 

Fig- 38. Fig. 39. 

It will be seen that, though the calculations yield 

different points for plotting, yet the result is identical. 

The two equations really mean the same thing. 

As many persons who use ordinary logarithms, 

which are calculated to base 10 instead of base e, are 

unfamiliar with the “ natural ” logarithms, it may be 

worth while to say a word about them. The ordinary 

rule that adding logarithms gives the logarithm of 

the product still holds good; or 

log, CS+log, b = log, ab. 

Also the rule of powers holds good; 

n X log, a = log, a™. 
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But as 10 is no longer the basis, one cannot multiply 

by 100 or 1000 by merely adding 2 or 3 to the 

index. One can change the natural logarithm to 

the ordinary logarithm simply by multiplying it by 

0'4343 ; or logjQa; = 0'4343 xlogeic, 

and conversely, log^ x = 2-3026 X logj,, x. 

A Useful Table of “Naperian Logarithms” 

(Also called Natural Logarithms or Hyperbolic Logarithms) 

Number Log,, Number Logj 

1 0-0000 6 1-7918 
1-1 0-0953 7 1-9459 
1-2 0-1823 8 2-0794 
1-5 0-4055 9 2-1972 
1-7 0-5306 10 2-,3026 
2-0 0-6931 20 2-9957 
2-2 0-7885 50 3-9120 
2-5 0-9163 100 4-6052 
2-7 0-9933 200 5-2983 
2-8 1-0296 500 6-2146 
30 1-0986 1,000 6-9078 
3-5 1-2528 2,000 7-6010 
4-0 1-3863 5,000 8-5172 
4-5 1-5041 10,000 9-2104 
5-0 1-6094 20,000 9-9035 

Exponential and Logarithmic Equations. 

Now let us try our hands at differentiating certain 

expressions that contain logarithms or exponentials. 

Take the equation: 

y = logj X. 

First transform this into 

ey = x, 
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whence, since the differential of e'J with regard to y is 

the original function unchanged (see p. 143), 

dx 

dy 
= 6^ 

and, reverting from the inverse to the original func- 

%_L-l_l 
dx dx ey X 

"dy 

Now this is a very curious result. It may be 

written djlog^x) 

dx 

Note that is a result that we could never have 

got by the rule for differentiating powers. That rule 

(page 25) is to multiply by the power, and reduce the 

power by 1. Thus, differentiating x^ gave us 3*^; 

and differentiating x^ gave But differentiating 

a?® does not give us x-^ or Ox£r"h because a?® is itself 

= 1, and is a constant. We shall have to come back 

to this curious fact that differentiating loge® gives us 

~ when we reach the chapter on integrating. 

Now, try to differentiate 

y = log,(x + a), 

that is 6y = x+a; 

we have 
d(x+a) 

dy 
— ey, since the differential of ^y 

remains ey. 
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This gives 
dx 

dy' 
■0i = x+a‘, 

hence, reverting to the original function (see p. 131), 

1 ^ 1 
dx dx x+a 

dy 

Next try 2/= logic'*- 

First change to natural logarithms by multiplying 

by the modulus 0'4843. This gives us 

y = 0-4343 logj®; 

0-4343 

dx X 
whence 

The next thing is not quite so simple. Try this; 

y — aF. 

or 

Taking the logarithm of both sides, we get 

^og,y = x\og,a, 

_\og,y _ 1 
X 

Since 
logeC* 

log^a logeffl 

is a constant, we get 

xlogey. 

dx 1 1 
X - = 

dy log, a y a* x log, a’ 

hence, reverting to the original function, 

dy 1 
- V loo- 
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We see that, since 

dx ^dy j dx 1 1 
= l and — = - X,- 

dy dx dy y 
1 dy , 

We shall find that whenever we have an expression 

such as loge?/ = a function of x, we always have 
1 (a IJ 
- ^ = the differential coefficient of the function of x, 

so that we could have written at once, from 

log, 2/= a? log, a. 

Let us now attempt further examples. 

Examples. 

(1) y = e"®* Let —ax = z; then?/ = e^. 

dy , dz , dy 
—=—a; hence -y-=—ae‘ 

dx dx ’ dx 

Or thus; 

■ay= —ae' 

a;2 

(2) y = e^. Let'-^ = 2; ; then^ = ef 

dy ^ _ dz_'ix dy _ 'lx ~ 
dz ^ ’ dx^ o ' dx~ 

Or thus: 

log,^ = 
x‘‘‘ 

¥ 

1 dy _ lx ^ dy _lx 

y ~dx Z ’ dx .3 
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(3) y - 

hence 

‘lx 

, 2a? \dy 2(»+l)-2a?. 
y dx (a;+l)^ 

_ 
dx (a;4-l)‘'^ 

lx 

T,eG^. 

2a; 
Check by writing = 

(4) ^ = 6'"""+“. \og,y={x^+af. _ 

1 dy__ X 

ydx {x‘^ + a)^ dx {x‘^+af 

(For if {x^ + af = u and x^ + a = v, tt = -w'b 

dm, _ ^ 2^. dM_ x \ 

dv~2v'i’ d.x ’ dx (a?^+ )«*■/ 

Check by writing 

v»3 (5) ^ = log (a+a3^). Let (a+a?®) — z; then ^ = 

= hence = 
dz z’ dx ’ dx a + x 

(6) ^ = log,{3a;2+Vtt+a;2}. Let ?,x^+Ja+x^-=z 

then y = \og^z. 

(is s tZa; Vaj^ + a 

dy sf _ai(l + b<y x^ + a)_ 

dx^ {2>x‘^ + Jx^ + a)Jx^ + a 
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(7) y-={oo+ZfJx — ‘i. 

log, ^ = 2 log, (aj + 3) +1 log, {x - 2). 

\dy _ 2 1 

y dx ^ (x+3) ^ 2 ’ 

dy 
dx 

(8) 2/ = (a,'2 + 3)3(»3-2)t 

log,i/ = 3 log,(a;2 + 3) + f log,(a;-s- 2); 

l^_ri_2a; 2 3aj2 ^ e^. 2£f2 

^(7a; a;H3’^3 a;^-2~a;2 + 3‘^a;3-2‘ 

(For if 2/ = loge(a;^ + 3), let a;2-|-3=s and ^{ = log,s. 

dM_\, , du_ 2a; 
<72! 2’ rfa?“ (7a;~a!2 + 3‘ 

Similarly, if ^; = log,(a;^-2), ^ and 
(XOO QG ZiJ 

g=(i,.2+3)3(^.B_ + 
x'^ — 2j' 

(9) y= 
Va-'^+a 

^od^—a 

'^og.y=\ log^(a;2 + a) - ^ log,(a;3 - a). 

1 dy_l 2x 1 3a;2 _ x 

y dx 2 x‘^+a 3 x^-a~x‘^+a aF^ 

dy{ X x^ ] 

dx dj a;® — a\x^ + a x^ — aj' 
and 
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(10) = 

dy 

dx logA* X log^x 

(11) ^ = 4/log, it; = (log, x^K Let s = log, a;; y = zi 

<^;t/_l^_2 dz _1 , dy 1 

dz 3"^ ’ dx x’ dx Sif^/loge^a? 

(12) .'/-(ji) ■ 

log, ?/ = ax (log, 1 — log, a*) = — ax log, a®. 

— ait;xa*log,a —alog,a* 

and (,x- X log, a+a log, a*). 

Try now the following exercises. 

Exercises XII. (See page 260 for Answers.) 

(1) Difterentiate ^ = &(e“® —e"“®). 

(2) Find the differential coefficient with respect to 

t of the expression u = at‘^ + 2 log, t. 

(3) If y = n\ find 

(4) Show that if y = i ^ 

(5) If tv=pE^-, find “ 

h log,(t dx 

dw 

dv 
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Differentiate 

(6) y^log.x"^. 

(8) 2/ = (3,*Hl)e-®^ 
(10) y = {?,x‘^-l){Jx+l). 
/n\ logA,« + 3) 

(7) y = 'S>e *-i. 

(9) 2/= loge(;»“+«). 

(12) y = a^xx"'. 

(13) It was shown by Lord Kelvin that the speed of 

signalling through a submarine cable depends on the 

value of the ratio of the external diameter of the core 

to the diameter of the enclosed copper wire. If this 

ratio is called y, then the number of signals s that can 

be sent per minute can be expressed by the formula 

s = a?/ log,- ^; 

where a is a constant depending on the length and 

the quality of the materials. Show that if these are 

given, s will be a maximum if y=\^Je. 

(14) Find the maximum or minimum of 

y = a6^ — \og^x. 

(15) Differentiate y = log,(a,x'6“'). 

(16) Differentiate y = (log,ax)^. 

The Logarithmic Curve. 

Let us return to the curve which has its successive 

ordinates in geometrical progression, such as that 

represented by the equation y = 'bp^. 

We can see, by putting a? = 0, that h is the initial 
height of y. 

Then when 

^ = 1, y = hp , a? =2, y = hp^] a? = 3, = etc. 
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Also, we see that p is the numerical value of the 

ratio between the height of any ordinate and that of 

the next preceding it. In Fig. 40, we have taken p 

as f; each ordinate being f as high as the preceding 

one. 

If two successive ordinates are related together 

thus in a constant ratio, their logarithms will have a 

constant difference; so that, if we should plot out 

a new curve. Fig. 41, with values of log, y as ordinates, 

it would be a straight line sloping up by equal steps. 

In fact, it follows from the equation, that 

log, y = \og,h + 30- \og,p, 

whence log, y - log, l = x- \og,p. 

Now, since log,j9 is a mere number, and may be 

written as logsj) = a, it follows that 

log, ^ = aa?, 

and the equation takes the new form 

y = 6 6®®. 
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The Die-away Curve. 

If we were to take as a proper fraction (less than 

unity), the curve would obviousl3r tend to sink down¬ 

wards, as in Fig. 42, where each successive ordinate 

is I of the height of the preceding one. 

The equation is still 

y^hp^; 

but since p is less than one, log^^ will be a negative 

quantity, and may be written —a; so that y) = e“®, 

and now our equation for the curve takes the form 

The importance of this expression is that, in the 

case where the independent variable is time, the 

equation represents the course of a great many 

physical processes in which something is gradually 

dying away. Thus, the cooling of a hot body is 

represented (in Newton's celebrated “law of cooling”) 

by the equation 
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where is the original excess of temperature of a 

hot body over that of its surroundings, 0* the excess 

of temperature at the end of time t, and t* is a con¬ 

stant—namely, the constant of decrement, depending 

on the amount of surface exposed by the body, and 

on its coefficients of conductivity and emissivity, 

etc. 

A similar formula, 

is used to express the charge of an electrified body, 

originally having a charge Q^, which is leaking away 

with a constant of decrement a, which constant 

depends in this case on the capacity of the body and 

on the resistance of the leakage-path. 

Oscillations given to a flexible spring die out after 

a time; and the dying-out of the amplitude of the 

motion may be expressed in a similar way. 

In fact serves as a die-away factor for all 

those phenomena in which the rate of decrease 

is proportional to the magnitude of that which is 

decreasing; or where, in our usual symbols 

proportional at every moment to the value that y has 

at that moment. For we have only to inspect the 

curve, Fig. 42 above, to see that, at every part of it, 

the slope ^ is proportional to the height y \ the 
(^OC 

curve becoming flatter as y grows smaller. In sym¬ 

bols, thus 7 
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loge y = log, h - ax log, e = log, 6 - ax, 

and, differentiating 

hence ^ = 
ax 

\dy _ 
y dx ~ ^ ’ 

6e-«®x(-a)= -ay\ 

or, in words, the slope of the curve is downward, and 

proportional to y and to the constant a. 

We should have got the same result if we had 
taken the equation in the form 

for then 

But 

giving us 

as before. 

y=hp^-, 

^=to*xIog,^. 

log,p= -a, 

Ihe Time-constant. In the expression for the “ die- 

away factor” e-“', the quantity a is the reciprocal of 

another quantity known as “ the time-constant,” which 

we may denote by the symbol T Then the die-away 

factor will be written e"?; and it will be seen, by 

making t~T that the meaning of T ^or of is that 

this is the length of time which it takes for the original 

quantity (called or in the preceding instances) 

to die away to ^th part—that is to 0-3678—of its 

original value. 



TPIE LAW OF ORGANIC GROWTH 159 

The values of e® and are continually required 

in different branches of physics, and as they are given 

in very few sets of mathematical tables, some of the 

values are tabulated here for convenience. 

X e* 

0-00 1-0000 1-0000 0-0000 

0-10 1-1052 0-9048 0-0952 

0-20 1-2214 0-8187 0-1813 

0-50 1-6487 0-6065 0-3935 

0-75 2-1170 0-4724 0-5276 

0-90 2-4596 0-4066 0-5934 

1-00 2-7183 0-3679 0-6321 

1-10 3-0042 0-3329 0-6671 

. 1-20 3-3201 0-3012 0-6988 

1-25 3-4903 0-2865 0-7135 

1-50 4-4817 0-2231 0-7769 

1-75 5-754 0-1738 0-8262 

2-00 7-389 0-1353 0-8647 

2-50 12 183 0-0821 0-9179 

300 20-085 0-0498 0-9502 

3-50 33-115 0-0302 0-9698 

4-00 54-598 0-0183 0-9817 

4-50 90-017 0-0111 0-9889 

5-00 148-41 0-0067 0-9933 

5-50 244-69 0-0041 0-9959 

6-00 403-43 0-00248 0-99752 

7-50 1808-04 0-00053 0-99947 

10-00 22026-5 0-000045 0-999955 

As an example of the use of this table, suppose 

there is a hot body cooling, and that at the beginning 
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of the experiment (i.e. when « = 0) it is 72“ hotter than 

the surrounding objects, and if the time-constant of its 

cooling is 20 minutes (that is, if it takes 20 minutes 

for its excess of temperature to fall to - part of 72°), 

then we can calculate to what it will have fallen in 

any given time t. For instance, let t be 60 minutes. 

Then ^=60-^20 = 3, and we shall have to find the 

value of e~‘‘, and then multiply the original 72“ by 

this. The table shows that e-s is 0'0498. So that 

at the end of 60 minutes the excess of temperature 

will have fallen to 72° x 0-0498 = 3-586“. 

Further Examples. 

(1) The strength of an electric current in a con¬ 

ductor at a time t secs, after the application of the 

electromotive force producing it is given by the ex- 

pression C=pll — e 

The time constant is 
R' 

E=l(),R=l,L = ()-Q\] then when t is very large 
-p 

the term e becomes 1, and (7=-== 10; also 
K 

L 

R 
:Y=0-01. 

Its value at any time may be written; 

(7-=10-10e'o4i, 
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the time-constant being 0 01. This means that it 

takes O-Ol sec. for the variable term to fall by 
1 _L 
- = 0’3678 of its initial value lOe 0-01= 10. 
e 

To find the value of the current when ^ = 0'()01 sec., 

say, ^,= 0-1, = 0-9048 (from table). 

It follows that, after O'OOl sec., the variable term 

is 0-9048 X 10 = 9-048, and the actual current is 

10-9-048 = 0-952. 

Similarly, at the end of (VI sec., 

1^=10; = 0-000045, 

the variable term is 10 X 0-000045 = 0-00045, the current 

being 9-9995. 

(2) The intensity / of a beam of light which has 

passed through a thickness I cm. of some transparent 

medium is 1=1^6"^^, where is the initial intensity 

of the beam and A" is a “ constant of absorption.” 

This constant is usually found by experiments. If 

it be found, for instance, that a beam of light has 

its intensity diminished by 18% in passing through 

10 cms. of a certain transparent medium, this means 

that 82= 100 X 6“or 6-1°^ = 0-82, and from the 

table one sees that 10Z=0-20 very nearly; hence 

K=0-02. 
To find the thickness that will reduce the intensity 

to half its value, one must find the value of I which 

satisfies the equality 50 = 100 x or 0-5 = 6-'>'»2t 

C.M.E. ^ 
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It is found by putting this equation in its logarithmic 

form, namely, 
log 0'5 = — 0'02 X ? X log e, 

which gives __ 

= centime^ n«rly. 

(3) The quantity ^ of a radio-active substance 

which has not yet undergone transformation is known 

to be related to the initial quantity of the sub¬ 

stance by the relation Q — Q^e"^*, where X is a constant 

and t the time in seconds elapsed since the trans¬ 

formation began. 

For “ Radium A,” if time is expressed in seconds, 

experiment shows that X = 3'85 x 10"®. Find the time 

required for transforming half the substance. (This 

time is called the “ mean life ” of the substance.) 

We have = 

log 0-5 = — 000385^ X log e; 

and t = 3 minutes very nearly. 

Exercises XIII. (See page 260 for Answers.) 

(1) Draw the curve y = he r; where & = 12, T—^, 

and t is given various values from 0 to 20. 

(2) If a hot body cools so that in 24 minutes its 

excess of temperature has fallen to half the initial 

amount, deduce the time-constant, and find how long 

it will be in cooling down to 1 per cent, of the original 

excess. 
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(3) Plot the curve ^ = 100(1 — 6'^*)- 

(4) The following equations give very similar curves; 

ax __ 

X 

(ii) y = a{\—e T>); 

(iii) |/ = ^arctan(|). 

Draw all three curves, taking a.= 100 millimetres; 

5 = 30 millimetres. 

(6) Find the differential coefficient of y with respect 

to if y = x^\ (b) y = {e^y-, (c) y = e^. 

(6) For “ Thorium A,” the value of X is 5 , find the 

“ mean life,” that is, the time taken by the trans¬ 

formation of a quantity Q of “ Thorium A ” equal to 

half the initial quantity in the expression 

t being in seconds. 

(7) A condenser of capacity /fi=4xl0-®, charged 

to a potential Fo = 20, is discharging through a resist¬ 

ance of 10,000 ohms. Find the potential F after (a) Ol 

second, (b) O’Ol second; assuming that the fall of 
t 

potential follows the rule F= F^e 

(8) The charge Q of an electrified insulated metal 

sphere is reduced from 20 to 16 units in 10 minutes. 

Find the coefficient y. of leakage, if Q = \ Q^y 

being the initial charge and t being in seconds. Hence 

find the time taken by half the charge to leak away. 
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(9) The damping on a telephone line can be ascer¬ 
tained from the relation i = where i is the 

strength, after t seconds, of a telephonic current of 
initial strength ; Z is the length of the line in kilo¬ 

metres, and is a constant. For the Franco-English 
submarine cable laid in 1910, j8 = 0'0114. Find the 

damping at the end of the cable (40 kilometres), and 
the length along which i is still 8 % of the original 
current (limiting value of very good audition). 

(10) The pressure p of the atmosphere at an altitude 
h kilometres is given by p=Pfp-'‘^\ p^ being the 
pressure at sea-level (760 millimetres). 

The pressures at 10, 20 and 50 kilometres being 

199‘2, 42'2, 0'32 respectively, find k in each case. 
Using the mean value of k, find the percentage error 
in each case. 

(11) Find the minimum or maximum of y = x^. 
1 

(12) Find the minimum or maximum of y = x^. 
1 

(l.’l) Find the minimum or maximum of y = xa^. 



CHAPTER XV. 

HOW TO DEAL WITH SINES AND COSINES. 

Greek letters being usual to denote angles, we will 

take as the usual letter for any variable angle the 

letter 0 (“theta”). 

Let us consider the function 

y = sin 0. 

What we have to investigate is the value of 
(^(sin 0) _ 

or, in other words, if the angle 0 varies, we have to 

find the relation between the increment of the sine 

and the increment of the angle, both increments being 

indefinitely small in themselves. Examine Fig. 43. 

wherein, if the radius of the circle is unity, the height 

of y is the sine, and 0 is the angle. Now, if 0 is 
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supposed to increase by the addition to it of the 

small angle dQ—an element of angle—the height 

of y, the sine, will be increased by a small element dy. 
The new height y-Vdy will be the sine of the new 

angle d + dd, or, stating it as an equation, 

y+dy = sin (0 + dO); 

and subtracting from this the first equation gives 

= sin (0 + «?0) — sin 0. 

The quantity on the right-hand side is the difference 

between two sines, and books on trigonometry tell 

us how to work this out. For they tell us that if 

M and N are two different angles, 

sin if — sin A^= 2 cos ■ sin 

If, then, we put M.= Q-\-dQ for one angle, and 

N=d for the other, we may write 

j s) 9-hd6-{-8 . 6-{-dd — 0 
dy=2 cos-q-sin —--, 

^ 2i 

or, dy = 2 cos (0 -f- ^dQ) • sin ^dd. 

But if we regard dd as indefinitely small, then in 

the limit we may neglect ^dQ by comparison with 0, 

and may also take sin |(?0 as being the same as ^dd. 
The equation then becomes ; 

dy = 2 C.OS 9 x^dQ; 

dy = c.o&9-d9, 

and, finally, -/| = cos0. 
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The accompanying curves. Figs. 44 and 45, show, 

plotted to scale, the values of ^ = sin0, and ^ = cos0, 

for the corresponding values of 0. 

Fig. 46. 



168 CALCULUS MADE EASY 

Take next the cosine. 

Let y = cos 0. 

Now cos 0 = sin 

Therefore 

dy = d (sin (| - 0^) = cos (| - 0^ x - 0). 

:COS (i -0)x(-rf0), 

d0~ 

And it follows that 

% 
de — sin 0. 

Lastly, take the tangent. 

Let y = tan 0, 

% = tan (0 + dQ) — tan 0. 

Expanding, as shown in books on trigonometry, 

tan 0+tandl0 
tan(0 + (?0) = 

1 — tan 0 • tan dQ ’ 

dy = 
tan0 + tan(f0 

l-tan0-tan(^0~^®'“^ 

(l+tan2 0) tan(?0 

1 — tan 0 • tan dQ ° 

whence 
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Now remember that if dQ is indefinitely diminished, 

the value of tan did becomes identical with dd, and 

tan 0-dd is negligibly small compared with 1, so that 

the expression reduces to 
^ (l + tam0)(*0 
(^y j , 

so that 
dy 
W 

l+tan^d. 

or 
dQ 

= sec^ 6. 

Collecting these results, we have; 

V 
dy 
de 

sin 6 cos 9 
cos 6 - sin 6 
tan 6 sec® 9 

Sometimes, in mechanical and physical questions, 

as, for example, in simple harmonic motion and in 

wave-motions, we have to deal with angles that in¬ 

crease in proportion to the time. Thus, if T be the 

time of one complete period, or movement round the 

circle, then, since the angle all round the circle is 27r 

radians, or 860°, the amount of angle moved through 

in time t, will be 

0 = 2'7r^, in radians, 

or 6=^360^,, in degrees. 
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If the frequency, or number of periods per second, 

be denoted by n, then J^ = ^, and we may then write: 

0 = 2Trnt. 

Then we shall have 

y = sin lirnt. 

If, now, we wish to know how the sine varies with 

respect to time, we must differentiate with respect, not 

to d, but to t. For this we must resort to the artifice 

explained in Chapter IX., p. 67, and put 

dy _ dy dQ 

dt do dt' 

dQ 
Now ^ will obviously be 2x« ; so that 

Cvv 

^ = cos 0 X 2Trn 
dt 

= 2™ • cos 2'7rnt. 

Similarly, it follows that 

(^(cos 2^^^^^) „ ■ ^ 

-77-^ = — 2to • sin 2^r^^^. 
dt 

Second Differential OoefiS.cient of Sine or Cosine. 

We have seen that when sin 6 is differentiated with 

respect to 0 it becomes cos 0; and that when cos 0 is 

differentiated with respect to 6 it becomes — sin0; 

or, in symbols. 
d'^(cos 0) 

dO^ 
— sin 0. 
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So we have this curious result that we have found 

a function such that if we differentiate it twice over, 

we get the same thing from which we started, but 

with the sign changed from + to —. 

The same thing is true for the cosine; for differen¬ 

tiating cos 0 gives us — sin 6, and differentiating 

— sin 9 gives us — cos 9 ; or thus: 

(cos 9) 

49^ ' 

— cos 9. 

Sines and cosines are the only functions of which 

the second differential coefficient is equal (and of 

opposite sign to) iAe orig%nal function. 

Examples. 

With what we have so far learned we can now 

differentiate expressions of a more complex nature. 

(1) ^ = arc sin a?. 

If y is the arc whose sine is x, then x = sin y. 

dx 

dy 
= cos y. 

Passing now from the inverse function to the original 

one, we get ^ ^ 

dx dx cos y 

dy 

Now Q,osy = sJl—s\n^y = s/^—oc^] 

hence f_ 
dx~ 

a rather unexpected result 
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(2) y — cos^d. 

This is the same thing a,s y = (cos 0)^. 

Let cos Q = v\ then w = 
dv 

dd dv de~ -^cosysmy. 

(3) y = &in{x + a). 

Let x-\-a = v\ then y = sin v. 

dy dv ^ dy , . x 
~ = cos«j; -r- = l and -~ = cos (;* + («). 
dv dx dx 

(4) ?y = logesin0. 

Let sin0 = i;; y = \ogeV. 

dy 1 dv n 
j =“= :75 = cos0; 
dv V dy 

dQ sin 0 
X cos 0 = cot 0. 

(o) W = COt0 = -“ X- 
^ ^ sin0 

(7?/ _ — sin^ 0 — cos^ 0 
dQ sin^0 

= — (I + coU 0) = — cosec^ 0. 

(6) 2/= tan 30. 

Let 36 = v; ^/ = ta,nv; ~=see'^w. 
dv 

~5| = 3; J = 3sec230. 
dO dO 
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(7) 2/ = ^/l+3tan^0; ^ = (1+3tan^0)4. 

Let 3tan‘^0 = v. 

(fo 

(for, if tan 0 = -m, 

= 6 tan Q sec'^ 9 

dv 

hence 

hence 

V — 

dv 

6^t; 
du 

= 6 tan 0 sec^ 9); 

du 
W 

-sec^O; 

d0 

dy _ 6tan0sec^0 

dd 2 V'l +stance 

(8) y = sin x cos x. 

dy 
dx 

sin x{ — sin x) + cos x X cos x 

= COS'"*'— sin^a?. 

Exercises XIV. (See page 261 for Answers.) 

(1) Differentiate the following: 

(i) ^ = A8in(0-|y 

(ii) ^ = sin^0; and^ = sin20. 

(iii) ^ = sin®0; and 2/ = sin30. 

(2) Find the value of 0 for which sin0xcos0 is a 

maximum. 

(3) Differentiate y = 7r- cos 2Trnt. 
^TT 
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(4) If ^ = sma® find 

(5) Difterentiate ^ = logs cos 0?. 

(6) Differentiate 2/= 18'2 sin (a?+ 26°). 

(7) Plot the curve ?/ = 100 sin (0 —15°); and show 

that the slope of the curve at 0 = 75° is half the 

maximum slope. 

(8) If j( = sin 0-sin 20, find 

(9) If ^/ = (t-tan™(0"'), find the diflerential coefficient 

of y with respect to 0. 

(10) Differentiate ;^ = e*8in^£t;. 

(11) Differentiate the three equations of Exercises 

XIII. (p. 163), No. 4, and compare their differential 

coefficients, as to whether they are equal, or nearly 

equal, for very small values of x, or for very large 

values of x, or for values of x in the neighbourhood 

of X = 30. 

(12) Differentiate the following : 

(i) y = ii&cx. 

(ii) ?/= arc cos 

(iii) y = arc tan x. 

(iv) 2/= arc sec a?. 

(v) «/= tan a? X Vs sec a?. 

(13) Differentiate ^ = sin (20+ 3)^’®, 

(14) Differentiate ?/ = 0® + 8 sin (0 + 3) — 3 ® — 3^- 

(15) Find the maximum or minimum of ^ = 0cos0. 



CHAPTER XVI. 

PAETIAL DIFFERENTIATION. 

We sometimes come across quantities that are func¬ 

tions of more than one independent variable. Thus, 

we may find a case where y depends on two other 

variable quantities, one of which we will call u and 

the other w. In symbols 

y=f{u, v). 

Take the simplest concrete case. 

Let y = uxv. 

What are we to do ? If we were to treat as a 

constant, and differentiate with respect to u, we 

should get dy^ = vdu; 

or if we treat m as a constant, and differentiate with 

respect to v, we should have: 

dyu=udv. 

The little letters here put as subscripts are to show 

which quantity has been taken as constant in the 

operation. 

Another way of indicating that the differentiation 

has been performed only 'partially, that is, has been 

performed only with respect to one of the independent 
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variables, is to write the differential coefficients with 

Greek deltas, like 3, instead of little In this way 

'dy 

If we put in these values for v and n respectively, 

we shall have 

(lyv= 
■dy 

Zu 

Zt/ 

Zv 

du, 

dv, 

which are 'partial differentials. 

But, if you think of it, you will observe that the 

total variation of y depends on both these things at 

the same time. That is to say, if both are varying, 

the real dy ought to be written 

dy='^du+ff^ dv; 
Zy 

and this is called a total differential. 

it is written dy- 
dy 

du. 
dv. 

In some books 

Example (1). Find the partial differential co 

efficients of the expression w = 2ax^ + 2bxy + 4>cy^. 

The answers are: 

, , .-,7, 1 

Zy 
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The first is obtained by supposing y constant, the 

second is obtained by supposing x constant; then 

dtv = (4aaj + ohy)dx+(36a?+12ey^)dy. 

Example (2). Let z = x». Then, treating first y 

and then x as constant, we get in the usual way 

'dx 
- = yx'J- 

dz 

dy 
= xy X log^x, 

so that dz = yxy ''''-dx+log^ x dy. 

Example (3). A cone having height Ji and radius 

of base r, has volume V = J-7rr%. If its height remains 

constant, while r changes, the ratio of change of 

volume, with respect to radius, is different from ratio 

of change of volume with respect to height which 

would occur if the height were varied and the radius 

kept constant, for 

9r 

3F_ TT 

^“3 

The variation when both the radius and the height 

27r 
change is given by dV = rh dV + k T^dh. 

o o 

Example (4). In the following example F and f 

denote two arbitrary functions of any form whatso¬ 

ever. For example, they may be sine-functions, or 

exponentials, or mere algebraic functions of the two 
M C.M.E. 
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independent variables, t and x. This being under¬ 

stood, let us take the expression 

or, 

where 

Then 

y=F{x-{-at) +f{x—at), 

y = F{w)+f{v), 

w = x+at, and v = x — at. 

?)y_dF{w) ?iw , 'dfiv) 'dv 
dx dw dx dv dx 

= F'(w)-l+f{v)-l 

(where the figure 1 is simply the coefficient of x in 

tv and v); 

and ^^ = F"{w)+r{v). 

Also dy^dFjw) dw df{v) ^ 

dt dw ' dt^ dv ' dt 

and 

whence 

= F'{w)-a—f'{v)a-, 

'^^,=F''{w)a?+r{v)a^- 

df dx^' 

This differential equation is of immense importance 

in mathematical physics. 

Maxima and Minima of Functions of two 

Independent Variables. 

Example (5). Let us take up again Exercise IX., 

p. 110, No. 4. 

Let X and y be the length of two of the portions of 

the string. The third is 30 — {x + y), and the area of the 
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triangle is A =/s/s(,s ——^)(s —30+ir + ^), where 

s is the half perimeter, 15, so that A = V 15jP, where 

P = (15-x)(l5-y)ix+y-15) 

= x'y^ + x^y —15®^ — 1 oy^ — 4soxy + 450® + 450?/ — 3375. 

Clearly A is maximum when P is maximum. 

dP = ^ dx+^dy. 
?ix- oy 

For a maximum (clearly it will not be a minimum in 

this case), one must have simultaneously 

that is, 

3P A 3-P A. ;-- = 0 and = 
?)X 3// 

2xy — 30a;+?/^ — 45?/+450 = 0,) 

^xy — 80?/ + — 45a; + 450 = 0. J 

An immediate solution is x — y. 

If we now introduce, this condition in the value 

of Pi we find 

, p = (10 - xfi^x -15) = 2a;® - 75a;2+900a; - 3375. 

dP 
For maximum or minimum, -^ = 6a;®--150a;+ 900 = 0, 

which gives a; = 15 or a; =10. 

Clearly a;=15 gives minimum area; a;=10 gives 

the maximum, for --^--5- = 12a;- 150, which is +30 for 
■aa;® . 

a;=15 and —30 for a;=10. 

Example (6). Find the dimensions of an ordinary 

railway coal truck with rectangular ends, so that, 

for a given volume F the area of sides and floor 

together is as small as possible. 
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The truck is a rectangular box open at the top. 

Let X be the length and y be the width; then the 

V 2U 2U 
depth is — The surface area is 8=xii-{-1- 

xy '' X y 

^ “ %) +(*'■ “ 

For minimum (clearly it won’t be a maximum here), 

2F 

x^ 
2 =0, X — VL- 0. 

Here also, an immediate solution is x = y, so that 

C 2 I o nr • • A o = x'^ H-, = 2x-5- = 0 tor minimum, and 
X ax x^ 

X = 4/2F. 

Exercises XV. (See page 262 for Answers.) 

'll 
(1) Differentiate the expression '-^- — 2x^y—2y‘^x + ^ 

with respect to x alone, and with respect to y alone. 

(2) Find the partial differential coefficients with 

respect to x, y and z, of the expression 

x^yz+xy^z+ocyz^+x^y^z^. 

(3) Let = {x — af + iy — hf + iz — cf. 

Find the value of ”• Also find the value 
ox oy 3s 

. 3V 3V 3V 

^ ?yy^ 3s^ 

(4) Find the total differential of y — E’. 



PARTIAL DIFFERENTIATION 181 

(5) Find the total differential of y = u^s\n v, of 

/ • If loge^f 
y = (sin x) ; and ot y = —• 

(6) Verify that the sum of three quantities x, y, z, 

whose product is a constant k, is maximum when 

these three quantities are equal. 

(7) Find the maximum or minimum of the function 

M=x + 2xy+y. 

(8) The post-office regulations state that no parcel 

is to be of such a size that its length plus its girth 

exceeds 6 feet. What is the greatest volume that 

can be sent by post (a) in the case of a package of 

rectangular cross section; (b) in the case of a package 

of circular cross section. 

(9) Divide tt into 3 parts such that the continued 

product of their sines may be a maximum or minimum. 

(10) Find the maximum or minimum of U-- 

gX+V 

XV 

(11) Find maximum and minimum of 

u=y+2x—2\og,y—\og,x. 

(12) A telpherage bucket of given capacity has 

the shape of a horizontal isosceles triangular prism 

with the apex underneath, and the opposite face open. 

Find its dimensions in order that the least amount 

of iron sheet may be used in its construction. 



CPIAPTER XVIJ. 

INTEGEATION. 

The great secret has already been revealed that this 

mysterious symbol which is after all only a long S, 

merely means “ the sum of,” or “ the sum of all such 

quantities as. ’ It therefore resembles that other 

symbol S (the Greek Sigma), which is also a sign 

of summation. There is this difference, however, in 

the practice of mathematical men as to the use of 

these signs, that while 2 is generally used to indicate 

the sum of a number of finite quantities, the integral 

sign J is generally used to indicate the summing up 

of a vast number of small quantities of indefinitely 

minute magnitude, mere elements in fact, that go 

to make up the total required. Thus [dy = y, and 

\dx = x. 

Any one can understand how the whole of anything 

can be conceived of as made up of a lot of little bits; 

and the smaller the bits the more of them there will 

be. Ihus, a line one inch long may be conceived as 

made up of 10 pieces, each of an inch long; or 

of 100 parts, each part being of an inch long; 
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or of 1,000,000 parts, each of which is y,uol.<,ro 

inch long; or, pushing the thought to the limits of 

conceivability, it may be regarded as made up of 

an infinite number of elements each of which is 

infinitesimally small. 

Yes, you will say, but what is the use of thinking 

of anything that way ? Why not think of it straight 

off, as a whole ? The simple reason is that there are 

a vast number of cases in which one cannot calculate 

the bigness of the thing as a whole without reckoning 

up the sum of a lot of small parts. The process of 

“ integrating ” is to enable us to calculate totals that 

otherwise we should be unable to estimate directly. 

Let us fir.st take one or two simple cases to 

familiarize ourselves with this notion of summing 

up a lot of separate parts. 

Consider the series; 

l + i + i + i+re+A+oV + ete. 

Here each member of the series is formed by taking 

it half the value of the preceding. What is the value 

of the total if we could go on to an infinite number 

of terms ? Every schoolboy knows that the answer 

is 2. Think of it, if you like, as a line. Begin with 

Fig. 46. 

one inch j add a half inch, add a c^narter, add an 

eighth; and so on. If at any point of the operation 
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we stop, there will still be a piece wanting to make 

up the whole 2 inches ; and the piece wanting will 

always be the same size as the last piece added. 

Thus, if after having put together 1, i, and we stop, 

there will be I wanting. If we go on till we have 

added there will still be eV wanting. The 

remainder needed will always be equal to the last 

term added. By an infinite number of operations 

only should we reach the actual 2 inches. Practically 

we should reach it when we got to pieces so small 

that they could not be drawn—that would be after 

about 10 terms, for the eleventh term is If we 

want to go so far that not even a Whitworth’s 

measuring machine would detect it, we should merely 

have to go to about 20 terms. A microscope would 

not show even the 18“' term ! So the infinite number 

of operations is no such dreadful thing after all. 

The integral is simply the whole lot. But, as we 

shall see, there are cases in which the integral 

calculus enables us to get at the exact total that 

there would be as the result of an infinite number 

of operations. In such cases the integral calculus 

gives us a rapid and easy way of getting at a result 

that would otherwise require an interminable lot of 

elaborate working out. So we had best lose no time 
in learning how to integrate. 
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Slopes of Curves, and the Curves themselves. 

Let us make a little preliminary enquiry about the 

slopes of curves. For we have seen that differentiating 

a curve means finding an expression for its slope (or 

for its slopes at different points). Can we perform 

the reverse process of reconstructing the whole curve 

if the slope (or slopes) are prescribed for us ? 

Go back to case (2) on p. 84. Here we have the 

simplest of curves, a sloping line with the equation 

y = ax-\-b. 

We know that here h represents the initial height 

of y when a? = 0, and that a, which is the same as 
dy 

dx' 

is the “ slope ” of the line. The line has a constant 

slope. All along it the elementary triangles 

dx 
have the same proportion between height and base. 

Suppose we were to take the dx’s, and dy^'s, of finite 
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magnitude, so that 10 dx's, made up one inch, then 

there would be ten little triangles like 

Now, suppose that we were ordered to reconstruct 

the “curve,” starting merely from the information 

that What could we do? Still taking the 

little d’s as of finite size, we could draw 10 of them, 

all with the same slope, and then put them together, 

end to end, like this: 

Fig. 48. 

And, as the slope is the same for all, they would join 

to make, as in Fig. 48, a sloping line sloping with the 

correct slope 
dx 

a. And whether we take the dy’B 

and dx s as finite or infinitely small, as they are all 
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alike, clearly - = a, if we reckon y as the total of 
00 

all the dy's, and x as the total of all the dx’s. But 

whereabouts are we to put this sloping line ^ Are 

we to start at the origin 0, or higher up? As the 

only information we have is as to the slope, we are 

without any instructions as to the particular height 

above 0; in fact the initial height is undetermined. 

The slope will be the same, whatever the initial height. 

Let us therefore make a shot at what may be wanted, 

and start the sloping line at a height C above O. 

That is, we have the equation 

y = ax + G. 

It becomes evident now that in this case the added 

constant means the particular value that y has when 

a? = 0. 
Now let us take a harder case, that of a line, the 

slope of which is not constant, but turns up more and 

more. Let us assume that the upward slope gets 

greater and greater in proportion as x grows. In 

symbols this is; 

dx 
-ax. 

Or, to give a concrete case, take a - 

dy _ 

SO that 

dx 
—. .1 ryt 
— E tK/» 

Then we had best begin by calculating a few of 

the values of the slope at different values of x, and 

also draw little diagrams of them. 
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When x = 0, ^ = 0, 
(X/00 

-- 

*=2. ^.0-4, 
ax 

*„.,4. g=0.8, 

* = 6. g=1.0. Z1 
Now try to put the pieces together, setting each so 

that the middle of its base is the proper distance to 

the right, and so that they fit together at the corners; 

thus (Fig. 49). The result is, of course, not a smooth 

Y 
p 

O 1 2 S 4- 
Fig. 49. 

*
-

 

curve: but it is an approximation to one. If we had 

taken bits half as long, and twice as numerous, like 

Fig. 50, we should have a better approximation. But 
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for a perfect curve we ought to take each dx and its 
corresponding dy infinitesimally small, and infinitely 

numerous. 

Then, how much ought the value of any y to he 1 

Clearly, at any point P of the curve, the value of 
y will be the sum of all the little dy’s from 0 up to 

that level, that is to say, ^dy = y. And as each dy is 

equal to ^x- dx, it follows that the whole y will be 
equal to the sum of all such bits as ^x • dx, or, as we 

should write it, • dx. 

Now if X had been constant, • dx would have 

been the same as ^x^dx, or But x began by 

being 0, and increases to the particular value of x at 
the point P, so that its average value from 0 to that 

point is Ja?. Hence |i£C(^» = T^a3^; or y = ^^x^. , 

But, as in the previous case, this requires the addition 
of an undetermined constant (7, because we have not 
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been told at what height above the origin the curve 

will begin, when x = 0. So we write, as the equation 

of the curve drawn in Fig. 51, 

Exercises. XVI. (See page 2(12 for Answers.) , 

(1) Find the ultimate sum of +i + -L-)_„Lq.etc 

(2) Show that the series 1-i-f J.-i-f-v-i + i etc. 

is convergent, and find its sum to: 8 terms" 

(3) If log. (l+£r): 
fjfiZ /y»4 

find log,!-3. 

(4) Following a reasoning similar to that explained 
in this chapter, find y, 



CHAPTER XVIII. 

INTEGKATING AS THE REVERSE OF 

DIFFERENTIATING. 

Differentiating is the process by which when y is 

given us (as a function of x), we can find ™ 

Like every other mathematical operation, the 

process of differentiation may be reversed; thus, if 

differentiating y = x‘^ gives us begins 

with ^ = 4a3^ one would say that reversing the process 
(JtX 

would yield y — x^. But here comes in a curious 

point. We should get ^ = if we had begun with 

any of the following; as'b or x* + a, or x^ + c, or x'^ 

with any added constant. So it is clear that in 

working backwards from — to t/, one must make 
^ ax 

provision for the possibility of there being an added 

constant, the value of which will be undetermined 
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until ascertained in some other way. So, if differ¬ 

entiating yields going backwards from 

„ , Ml 
= will give us i/ = a,«+(7; where G stands 

for the yet undetermined possible constant. 

Clearly, in dealing with powers of x, the rule for 

working backwards will be: Increase the power by 1, 

then divide by that increased power, and add the 

undetermined constant. 

So, in the case where 

dx 
■x‘' 

working backwards, we get 

1 
y= n + l 

a?" ^ + G. 

If differentiating the equation y ~ gives us 

dy 
= anx'^'^- 

dx 

it is a matter of common sense that beginning with 

dy 

dx 

and reversing the process, will gi ve us 

y = ax"-. 

So, when we are dealing with a multiplying constant, 

we must simply put the constant as a multiplier of 

the result of the integration. 



HOW TO INTEGRATE 193 

* dii 
Thus, if ^ = the reverse process gives us 

y = 

But this is incomplete. For we must remember 

that if we had started with 

y = ax”'+0, 

where G is any constant quantity whatever, we should 

equally have found 

dp « 1 = anx^’‘-\ 
ax 

So, therefore, when we reverse the process we must 

always remember to add on this undetermined con¬ 

stant, even if we do not yet know what its value 

will be. 

This process, the reverse of differentiating, is called 

integrating-, for it consists in finding the value of 

the whole quantity y when you are given only an 

expression for dy or for Hitherto we have as 
dx 

much as possible kept dy and dx together as a dif¬ 

ferential coefficient; henceforth we shall more often 

have to separate them. 

If we begin with a simple case, 

dx 

We may write this, if we like, as 

dy = x‘^dx. 

Now this is a “ differential equation ” which informs 

us that an element of y is equal to the corresponding 

element of x multiplied by Now, what we want 
N C.M.E. 
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is the integral; therefore, write down with the proper 

symbol the instructions to integrate both sides, thus: 

I = j" x^dx. 

[Note as to reading integrals: the above would be 

read thus: 

“Integral dee-ivy equals integral eks-squared dee-eks.”~\ 

We haven’t yet integrated: we have only written 

down instructions to integrate—if we can. Let us 

try. Plenty of other fools can do it—why not we 

also ? The left-hand side is simplicity itself. The 

sum of all the bits of y is the same thing as y itself. 

So we may at once put: 

2/ = I xMx. 

But when we come to the right-hand side of the 

equation we must remember that what we have got 

to sum up together is not all the dx's, but all such 

terms as xMx; and this will not be the same as 

dx, because is not a constant. For some of the 

dx’s will be multiplied by big values of x^, and some 

will be multiplied by small values of x^, according to 

what X happens to be. So we must bethink ourselves 

as to what we know about this process of integration 

being the reverse of differentiation. Now, our rule 

for this reversed process—see p. 191 ante—when 

dealing with as™ is “increase the power by one, and 

divide by the same number as this increased power.” 
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That is to say, x^dx will be changed* to ^x\ Put 

this into the equation; but don’t forget to add the 

“ constant of integration ” G at the end. So we get: 

y = ^sX^ + C. 

You have actually performed the integration. How 

easy! 

Let us try another simple case. 

Let = ax^^, 
ijViX/ 

where a is any constant multiplier. Well, we found 

when differentiating (see p. 29) that any constant 

factor in the value of y reappeared unchanged in the 

value of In the reversed process of integrating, 
(jjQC 

it will therefore also reappear in the value of y. So 

we may go to work as before, thus; 

dy== ax^'^ • dx, 

^dy=^ax^^ • dx, 

^dy — a^x^^dx, 

y=ax^^x^^+C. 

So that is done. How easy! 

*You may ask . what has become of the little dx at the end? 
Well, remember that it was really part of the differential coefficient, 
and when changed over to the right-hand side, as m the xHx, 
serves as a reminder that x is the independent variable with respect 
to which the operation is to be effected; and, as the result of the 
product being totalled up, the power of x has increased by one. 
You will soon become familiar with all this. 
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We begin to realize now that integrating is a 

process of finding our way back, as compared with 

differentiating. If ever, during differentiating, we 

have found any particular expression—in this example 

—we can find our way back to the y from which 

it was derived. The contrast between the two 

processes may be illustrated by the following remark 

due to a well-known teacher. If a stranger were set 

down in Trafalgar Square, and told to find his way to 

Euston Station, he might find the task hopeless. But 

if he had previously been personally conducted from 

Euston Station to Trafalgar Square, it would be 

comparatively easy to him to find his way back to 

Euston Station. 

Integration of the Sum or Difference of two 

Functions. 

Let = + 
ax 

then dy=xMx+x^dx. 

There is no reason why we should not integrate 

each term separately: for, as may be seen on p. 35, 

we found that when we differentiated the sum of two 

separate functions, the differential coefficient was 

simply the sum of the two separate differentiations. 

So, when we work backwards, integrating, the integra¬ 

tion will be simply the sum of the two separate 

integrations. 
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Our instructions will then be: 

^dy = ^{x^-\-a?)dx 

=^x^dx+^c(?dx 

y =|-a5®+T*^+0'. 

If either of the terms had been a negative quantity, 

the corresponding term in the integral would have 

also been negative. So that differences are as readily 

dealt with as sums. 

How to deal with Constant Terms. 

Suppose there is in the expression to be integrated 

a constant term—such as this: 

dy 

dx 

This is laughably easy. For you have only to 

remember that when you differentiated the expression 

y=ax, the result was ^ Hence, when you work 

the other way and integrate, the constant reappears 

multiplied by x. So we get 

dy = x'^dx+h ■ dx, 

^dy=^X^dx+^hdx, 

1 
y=:. ̂^+l 

X‘ ,n4-l + 'bx+C. 

Here are a lot of examples on which to try your 

newly acquired powers. 
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Examplts. 

(1) Given ™ = Find i/. Ans. y=2x^‘^ + C. 

(2) Find ^{a + h){x+l)dx. It is {a + h)^{x + l)dx 

+ x'j + C. 

(3) Given ^ = Find y,{. Ans. u — %gP+G. 

(4) ^ = .# —+ Find?/. 

or (a + &) xdx+\dx or (a+6) 

dy — {x^ — a? + x) dx or 

dy = Q(? dx—x^- dx+x dx; y = dx+dx; 

y- and -AX 4 . 1 /yj3 
~S tU 2 -G. 

(6) Integrate 9'75,#®dr. Ans. y = Sx^'^+G. 

All these are easy enough. 

dy 

dx 
Let ax 

Let us try another case. 

-1 

Proceeding as before, we will write 

dy = ax-'^-dx, x~''-dx. 

Well, but what is the integral of x-'^dx'i. 

If you look back amongst the results of differen¬ 

tiating a? and q(? and aA, etc., you will find we never 

got x^^ from any one of them as the value of 

We got 3,r* from a?®; we got 2,r from a?^; we got 1 

from (that is, from x itself); but we did not get 

x"'^ from a?°, for two very good reasons. First, a?® ,is 

simply =1, and is a constant, and could not have 
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a differential coefficient. Secondly, even if it could 

be differentiated, its differential coefficient (got by 

slavishly following the usual rule) would be Oxa?"\ 

and that multiplication by zero gives it zero value! 

Therefore when we now come to try to integrate 

x-'^dx, we see that it does not come in anywhere 

in the powers of x that are given by the rule: 

r 1 I 
I dL (A/dU   ^ do • J « + l 

It is an exceptional case. 

Well; but try again. Look through all the various 

differentials obtained from various functions of x, and 

try to find amongst them x^\ A sufficient search 
(I'll 

will show that we actually did get — ' 

result of differentiating the 
dx 

function y 

■ x~'^ as the 

-\og^x (see 

p. 148). 
Then, of course, since we know that differentiating 

logeiB gives us x^^, we know that, by reversing the 

process, integrating dy = x-^dx will give us y = \og,x. 

But we must not forget the constant factor a that 

was given, nor must we omit to add the undetermined 

constant of integration. This then gives us as the 

solution to the present problem, 

y = a\og,x+G. 

N.B.—Here note this very remarkable fact, that we 

could not have integrated in the above case if we had 

not happened to know the corresponding differentia¬ 

tion. If no one had found out that differentiating 

log^a; gave we should have been utterly stuck by 
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the problem how to integrate x-^dx. Indeed it should 

e frankly admitted that this is one of the curious 

features of the integral calculusthat you can’t 

integrate anything before the reverse process of differ¬ 

entiating something else has yielded that expression 

which you want to integrate. No one, even to-day, 

IS able to find the general integral of the expression, 

because a has never yet been found to result from 
differentiating' anything else. 

Another simple case. 

Find j(x+l)(x + 2)dx. 

On looking at the function to be integrated, you 

remark that it is the product of two different functions 

of a;. You could, you think, integrate (x + l)dx by 

itself, or (x+2)dx by itself. Of course you could. 

But what to do with a product ? None of the differ¬ 

entiations you have learned have yielded you for the 

differential coefficient a product like this. Failing 

such, the simplest thing is to multiply up the two 

functions, and then integrate. This gives us 

j(os^ + 3x+2)dx. 

And this is the same as 

dx -p J Sx dx -f- J 2dx. 

And performing the integrations, we got 

i-sc^'+ix^ + 2x+C. 
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Some other Integrals. 

Now that we know that integration is the reverse 

of differentiation, we may at once look up the differ¬ 

ential coefficients we already know, and see from 

what functions they were derived. This gives us the 

following integrals ready made : 

X ^ (p. 148); ^x~'^dx = log,x+C. 

1 

x+a 
(p. 149); \-^-dx = \og,{x+a) + G. 

(p. 143); ^e^dx = e^+C. 

g-x 1 e'^dx = —e~^+C 

(for if y 
1 dy 

e®' dx 

o
 

X
 1 II 

-1X6^ 

;2X =e )• 

sin X (p. 168); Jsin ,* dx = —cos x + C. 

cos,* (p. 166); [cos xdx — sinx+C. 

Also we may deduce the following; 

loge»; ^xdx = a?(loge x — l)-\-C 

(for iiy = x logj X — x, J = ^ + log,,^-l=log,»). 
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logioa^; |logi„a; dx = 0-4343a?(log, x-l) + C. 

a* (p, 149); a^dx — -1- (7. 
J logj a 

COS ax; 1 cos ax dx — - sin ax + C 
J a 

(for if y = ^\iiax, 
dy , 

= a cos ax \ hence to get cosax 

one must differentiate y = - sin ax). 
a 

sin ax; 1 sin ax dx= — - cos ax + 0. 
J a 

Try also cos^0; a little dodge will simplify matters; 

cos 20 = cos^0 —sin^0 = 2 cos 20 —1; 

hence cos^ 0 = ^ (cos^ 0 +1), 

and jcos^0tl0 = ij(cos20+l)d0 

= jjcos 20 ^"0 + j|t?0. 

= ~lp^ + |+(7. (See also p. 227.) 

See also the Table of Standard Forms on pp. 252, 253. 

You should make such a table for yourself, putting 

in it only the general functions which you have 

successfully differentiated and integrated. See to it 

that it grows steadily ! 
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On Double and Triple Integrals. 

In many cases it is necessary to integrate some 

expression for two or more variables contained in it; 

and in that case the sign of integration appears more 

than once. Thus, 

11/' '{x, y,)dxdy 

means that some function of the variables x and y 

has to be integrated for each. It does not matter in 

which order they are done. Thus, take the function 

x^-\-y‘^. Integrating it with respect to x gives us; 

I {x^+y'^) dx — +xy^. 

Now, integrate this with respect to y: 

j (ia?® + xy"^) dy = \ x^y+1 xif-, 

to which of course a constant is to be added. If we 

had reversed the order of the operations, the result 

would have been the same. 

In dealing with areas of surfaces and of solids, we 

have often to integrate both for length and breadth, 

and thus have integrals of the form 

» » 

u ■ dxdy, 

where u is some property that depends, at each point, 

on X and on y. This would then be called a stt/rface- 

integral. It indicates that the value of all such 
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elements as w • dx • dy (that is to say, of the value of u 

over a little rectangle dx long and dy broad) has to be 

summed up over the whole length and whole breadth. 

Similarly in the ease of solids, where we deal with 

three dimensions. Consider any element of volume, 

the small cube whose dimensions are dx dy dz. If 

the figure of the solid be expressed by the function 

f{x, y, %), then the whole solid will have the volume- 

integral. 

volume = y, «)• dx'dy- dz. 

Naturally, such integrations have to be taken be¬ 

tween appropriate limits* in each dimension; and the 

integration cannot be performed unless one knows in 

what way the boundaries of the surface depend on 

X, y, and z. If the limits for x are from x-^ to x^, 

those for y from to y^, and those for z from z^ 

to Z2, then clearly we have 1 

fzafyafe 

volume = f(x, y, z)-dx-dy dz. 

There are of course plenty of complicated and 

difficult cases; but, in general, it is quite easy to 

see the significance of the symbols where they are 

intended to indicate that a certain integration has to 

be performed over a given surface, or throughout a 

given solid space. 

* See p. 208 for integration between limits. 
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Exercises XVII. (See p. 263 for the Answers.) 

(1) Find ^ydx when 'if = ^ax. 

(2) Find 
J QO 

(3) Find ^0(?dx. 
J CXj 

(4) Ym(k^{x^ + a)dx. (5) Integrate 5x^k 

(6) Find f(4a« + 3** + 2a.'+l)<i». 

m“E=f+¥+x^«"^2'- 
(8) Find (9) Find |(£e + 3)®rfaj. 

(10) Find |(a;+2)(a?-ffl)rfa?. 

(11) Find ^{Jx+1/xy^a^dx. 

(12) Find |(sin0-|)^- 

(13) Find jcos^ad (^0. (14) Find |sm2 0c?0. 

(15) Find |sin^(t0i?0. (16) Find ^e^dx. 

<”> ■^“'5 ji w 
(18) Find 1^. 



CHAPTER XIX. 

OF FINDIFG AEEAS BY INTEGEATIFG, 

One use of the integral calculus is to enable us to 

ascertain the values of areas bounded by curves 

Let us try to get at the subject bit by bit. 

OZ. 

^ Let AB (Fig. 52) be a curve, the equation to which 

IS known. That is, y in this curve is some known 

function of x. Think of a piece of the curve from 
the point P to the point Q. 

Let a perpendicular PM be dropped from P, and 

another QN from the point Q. Then call OM=x 

and and the ordinates PM=y^ and QN=yl 

We have thus marked out the area PQNM that lies 
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beneath the piece PQ. The problem is, how can we 

calculate the value of this area ? 

The secret of solving this problem is to conceive 

the area as being divided up into a lot of narrow 

strips, each of them being of the width dx. ^ The 

smaller we take dx, the more of them there will be 

between x^ and *2- Now, the whole area is clearly 

equal to the sum of the areas of all such strips. Our 

business will then be to discover an expression for 

the area of any one narrow strip, and to integrate it 

so as to add together all the strips. Now think of 

any one of the strips. It will be like this: 

being bounded between two vertical sides, with i 

a fiat bottom dx, and with a slightly curved . 

sloping top. Suppose we take its average ; 

height as being y; then, as its width is dx, its | 

area will be ydx. And seeing that we^ may j 

take the width as narrow as we please, if we 

only take it narrow enough its average height will be 

the same as the height at the middle of it. Now 

let us call the unknown value of the whole area 

S, meaning surface. The area of one strip will be 

simply a bit of the whole area, and may therefore 

be called dS. So we may write 

area of 1 strip = dS = y • dx. 

If then we add up all the strips, we get 

total area ^ = | ~ 12/^^- 

So then our finding 8 depends on whether we can 
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integrate y • dx for the particular case, when we know 

wliat the value of ^ is as a function of x. 

For instance, if you were told that for the particular 

curve in question y = h + ax^, no doubt you could put 

that value into the expression and say: then I must 

find j* + <^x^) dx. 

That is all very well; but a little thought will show 

you that something more must be done. ' Because the 

area we are trying to find is not the area under the 

whole length of the curve, but only the area limited 

on the left by PM, and on the right by QN, it follows 

that we must do something to define our area between 
those ‘ limits.' 

This introduces us to a new notion, namely that of 

integrating between limits. We suppose x to vary, 

and for the present purpose we do not require any 

value of X below (that is OM), nor any value of 

X above x^ (that is ON). When an integral is to be 

thus defined between two limits, we call the lower 

of the two values the inferior limit, and the upper 

value the superior limit. Any integral so limited 

we designate as a definite integral, by way of dis¬ 

tinguishing it from a general integral to which no 
limits are assigned. 

In the symbols which give instructions to integrate, 

the limits are marked by putting them at the top 

and bottom respectively of the sign of integration. 
Thus the instruction . 

CX = X2, 

y-dx 
JX = Xi 
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will be read: find the integral of y • dx between the 

inferior limit and the superior limit x^. 

Sometimes the thing is written more simply 

y • dx. 
J X\ 

Well, but how do you find an integral between limits, 

when you have got these instructions ? 

Look again at Fig. 52 (p. 206). Suppose we could 

find the area under the larger piece of curve from 

A to Q, that is from x = Q to x = X2, naming the area 

AQNO. Then, suppose we could find the area under 

the smaller piece from A to P, that is from aj = 0 to 

= namely the area APMO. If then we were to 

subtract the smaller area from the larger, we should 

have left as a remainder the area PQNM, which is 

what we want. Here we have the clue as to what 

to do; the definite integral between the two limits is 

the difference between the integral worked out for 

the superior limit and the integral worked out for the 

lower limit. 

Let us then go ahead. First, find the general 

integral thus: 

and, as y = 6 + ax^ is the equation to the curve (Fig. 52), 

^{h+ax^)dx 

is the general integral which we must find. 

Doing the integration in question by the rule 

(p. 196), we get , « s , ^ 
bx+^ar+V-, 

C.M.E. o 
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and this will be the whole area from 0 up to any 

value of X that we may assign. 

Therefore, the larger area up to the superior limit 

a?2 will be 
bxg + ^xi + C-, 

and the smaller area up to the inferior limit x-^ will be 

bx-^^-l-^x-^+O. 

Now, subtract the smaller from the larger, and we 

get for the area S the value, 

area 8=b{x^ — x-^) + ^{x^ — x^). 

This is the answer we wanted. Let us give some 

numerical values. Suppose 6 = 10, a = 0'06, and = 8 

and = 6. Then the area S is equal to 

10(8-6) + ‘^(83-6S) 

= 20 + 0-02(512-216) 

= 20 + 0-02x296 

= 20 + 5-92 

= 25-92. 

Let us here put down a symbolic way of stating 

what we have ascertained about limits: 
*X^Xc^ 

ydx = y^-y^, 
x — x-. 

where y^ is the integrated value of ydx corresponding 

to a?2, and y^ that corresponding to x^. 
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All integration between limits requires the differ¬ 

ence between two values to be thus found. Also note 

that, in making the subtraction the added constant 0 

has disappeared. 

Examples. 

(1) To familiarize ourselves with the process, let us 

take a case of which we know the answer beforehand. 

Let us find the area of the triangle (Fig. 53), which 

Fig. 53. 

has base a? = 12 and height y = ^. We know before¬ 

hand, from obvious mensuration, that the answer will 

come 24. 

Now, here we have as the “curve” a sloping line 

for which the equation is 
X 

The area in question will be 

f-x=12 

y-dx = 

x=0 

00 • 
Integrating -^dx (p. 194), and putting down the 

O 

x= 



212 CALCULUS MADE EASY 

value of the general integral in square brackets with 

the limits marked above and below, we get 

area = + 0 

= -g^ = 24 Ans. 

Let us satisfy ourselves about this rather sur¬ 

prising dodge of calculation, by testing it on a simple 

example. Get some squared paper, preferably some 

that is ruled in little squares of one-eighth inch or 

one-tenth inch each way. On this squared paper 

plot out the graph of the equation, 

X 
2/=3- 

The values to be plotted will be: 

X 0 3 6 9 12 

V 0 1 2 3 4 

The plot is given in Fig. 54. 
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Now reckon out the area beneath the curve hy 

counting the little squares below the line, from x = 0 

as far as a? =12 on the right. There are 18 whole' 

squares and four triangles, each of which has an area 

equal to 1| squares ; or, in total, 24 squares. Hence 
00 

24 is the numerical value of the integral of ^dx 

between the lower limit oi x = 0 and the higher limit 

of x = 12. 

As a further exercise, show that the value of the 

same integral between the limits of £c = 3 and a; = 15 

is 36. 

(2) Find the area, between limits x = Xi and x = 0, 

of the curve w= —^—• 
^ x + a 

Area = 

X = Xi 

y -dx- 
x-\-a 

-dx 
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= 6 loge(aj+a) + U 

= ^ [loge {x^+a)- log, (0+a)] 

= 61og,^i±^. Ans. 
ct 

N.B.—Notice that in dealing with definite integrals 
the constant C always disappears by subtraction. 

Let it be noted that this process of subtracting one 
part from a larger to find the difference is really a 

common practice. How do you find the area of a 

plane ring (Fig, 56), the outer radius of which is 
and the inner radius is ? You know from men¬ 
suration that the area of the outer circle is irr^; then 
you find the area of the inner circle, then you 

subtract the latter from the former, and find area of 
ring = 7r(r3^ —r/) ; which may be written 

7r(r2+ri)(r2-ri) 

= mean circumference of ring x width of ring. 
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(3) Here's another case—that of the die-away curve 

(p. 156). Find the area between x = 0 and x = a, of 

the curve (Fig. 57) whose equation is 

y=z})e-^. 

Cx-a 

Area = & e-^-dx. 
Jjt-0 

The integration (p. 201) gives 

= h 
\a 

lo 

-6[-e-“-(-e-®)] 

= &(l-e-“). 

(4) Another exanjple is afforded by the adiabatic 

curve of a perfect gas, the equation to which is 

where p stands for pressure, v for volume, 

and n is of the value 1'42 (Fig, 58). 
Find the area under the curve (which is proportional 
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to the work done in suddenly compressing the gas) 
from volume to volume 

Here we have 

area= * dv 
J V=^Vi 

r 1 , 
= C 

Ll-^^ Xj 

= —i-») 
1—n ^ ^ ' 

= z:±(J^ 
0-42 

An Exercise. 

Prove the ordinary mensuration formula, that the 

area A of a circle whose radius is R, is equal to ttjB^ 

Consider an elementary zone or annulus of the 

surface (Fig. 59), of breadth dr, situated at a distance 

r'lG. 59. 

r from the centre. We may consider the entire sur¬ 

face as consisting of such narrow zones, and the 

whole area A will simply be the integral of all 
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sucli elementary zones from centre to margin, that is, 

integrated from r = 0 to r = R. 

We have therefore to find an expression for the 

elementary area dA of the narrow zone. Think of 

it as a strip of breadth df-, and of a length that is 

the periphery of the circle of radius r, that is, a 

length of 'i'TVT. Then we have, as the area of the 

narrow zone, dA = ^irrdr. 

Hence the area of the whole circle will be: JCr=ie Cr = -K 

dA = \ dr=2Tr\ r-dr. 
Jr=0 Jr=0 

Now, the general integral of r-dr is \r^. Therefore, 

A =27r[ 1^2 

If=0 

or 

whence A=tvR\ 

Another Exercise. 

Let us find the mean ordinate of the positive part 

of the curve 2/ = ® —which is shown in Fig. 60. 

To find the mean ordinate, we shall have to find the 

area of the piece OMN, and then divide it by the 
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length of the base ON. But before we can find 

the area we must ascertain the length of the base, 

so as to know up to what limit we are to integrate. 

At N the ordinate y has zero value; therefore, we 

must look at the equation and see what value of x 

will make y = 0. Now, clearly, if x is 0, y will also be 

0, the curve passing through the origin 0; but also, 

x=l, y — 0\ so that x=l gives us the position of 
the point N. 

Then the area wanted is 

j•a: = l 

= {x — x‘^)dx 
Jx = (l 

— j”-! _ 1 
3'^ J 

= [i-|]-[0-0] 
— 1 ~ 0. 

But the base length is 1. 

Therefore, the average ordinate of the curve = i 

[A.i?.—It will be a pretty and simple exercise in 

maxima and minima to find by differentiation what 

is the height of the maximum ordinate. It must be 

greater than the average.] 

The mean ordinate of any curve, over a range from 

x = Q to x = x.^,\s given by the expression, 

mean ^ = — y-dx. 
x~(i 

One can also find in the same way the surface area 

of a solid of revolution. 
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Example. The curve y = x^-h is revolving about 

the axis of x. Find the area of the surface generated 

by the curve between x = 0 and x — 6. 

A point on the curve, the ordinate of which is y, 

describes a circumference of length 'iiry, and a narrow 

belt of the surface, of width dx, corresponding to this 

point, has for area livy dx. The total area is 

27rJ ydx = 2'7r^ 5)t?a?=27r|^-g-—5a? ^ 

= 6-28x42 = 26:3-76. 

Areas in Polar Coordinates. 

When the equation of the boundary of an area is 

given as a function of the distance r of a point of it 

from a fixed point 0 (see Fig. 61) called the pole, and 

B A 

of the angle which r makes with the positive hori¬ 

zontal direction OX, the process just explained can 

be applied just as easily, with a small modification. 

Instead of a strip of area, we consider a small triangle 

OAB, the angle at 0 being dd, and we find the sum 



220 CALCULUS MADE EASY 

of all the little triangles making up the required 
area. 

The area of such a small triangle is approximately 
rm _ ^ 

2 X f or 2 y~T, hence the portion of the area 

included between the curve and two positions of r 

corresponding to the angles and 0^ is given by 

C0=e^ 
i| r^d6. 

Examples. 

(1) Find the area of the sector of 1 radian in a 

circumference of radius a inch. 

The polar equation of the circumference is evidently 
T — a. The area is 

Je=o 2 ‘ 

(2) Find the area of the first quadrant of the curve 

(known as “ Pascal’s Snail ”), the polar equation of 

which is r = (*(l + cos d). 

Co = ^ 

Area = I- ^a^l + coadYdd 
Je=o 

^tJ _ (i+2cosd+cos20)o;d 

_a2(3,r + 8) 

8 

4 
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Volumes by Integration. 

What we have done with the area of a little strip 

of a surface, we can, of course, just as easily do with 

the volume of a little strip of a solid. We can add 

up all the little strips that make up the total solid, 

and find its volume, just as we have added up all the 

small little bits that made up an area to find the final 

area of the figure operated upon. 

Examples. 

(1) Find the volume of a sphere of radius r. 

A thin spherical shell has for volume 4nrx^dx (see 

Fig. 59, p. 216); summing up all the concentric shells 

which make up the sphere, we have Jx=T 

47ra3^d[a? = 4'7rj^-g J =f7rr®. 

We can also proceed as follows: a slice of the 

sphere, of thickness dx, has for volume izy^dx (see 

Fig. 62). Also X and y are related by the expression 

y‘^ = E — x^. 
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Hence volume sphere = 2 7r(r^ — x^^dx 
Ja.' = 0 

'-Jx=0 Jx=0 J 

3Jo“ 3 
= 27r 

(2) Find the volume of the solid generated by the 

revolution of the curve y^~Qx about the axis of x, 
between x — 0 and x = 4!. 

The volume of a strip of the solid is -Tn/dx. 

= 4 fx = 4 

Hence volume = Try'^dx = Q'7v\ a 
J X = 0 J x=0 

xdx 

„ fa 
= UTT — 

_ I; 
= 487r = 150-8. 

On Quadratic Means. 

In certain branches of physics, particularly in the 

study of alternating electric currents, it is necessary 

to be able to calculate the quadvatic mean of a 

variable quantity. By ‘‘ quadratic mean ” is denoted 

the square root of the mean of the squares of all the 

values between the limits considered. Other names 

for the quadratic mean of any quantity are its 

“ virtual ” value, or its “ E.M.s.” (meaning root-mean- 

square) value. The French term is valeur ejfficace. If 

y IS the function under consideration, and the quad¬ 

ratic mean is to be taken between the limits oi x=0 

and x = l, then the quadratic mean is expressed as 

vrp 



FINDING AREAS BY INTEGRATING 223 

Examples. 
(1) To find the quadratic mean of the function 

y = ax {Y\g. &o). ^ 

Here the integral is | a?x^dx, 

which is 

-X 

Dividing by I and taking the square root, we have 

, . 1 7 quadratic mean = --^t»(. 

Here the arithmetical mean is ^al\ and the ratio 

of quadratic to arithmetical mean (this ratio is called 

2 
the/orm-/a.ctor) is -^ = 1T55. 

(2) To find the quadratic mean of the function y = x"'. 

p.a+1 Jx = l 

x^'^dx, that i 
a:=0 

Hence 

IS 
2a+ 1 

quadratic mean = 
pa 

2a + l 

(3) To find the quadratic mean of the function y = fx = l ( . ('*=‘ 
\a‘^jdx, that is J ^a^dx. 
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or 
Jog,aJ^=o’ 

x^l 

whicn is 
logs a 

2 /-1-T 

Hence the quadratic mean is - 
V Hogs a 

Exercises XVIII. (See p. 263 for Answers.) 

(1) Find the area of the curve y = x^ + .')e — 5 be¬ 

tween a? =0 and x = 6, and the mean ordinates between 
these limits. 

(2) Find the area of the parabola y = 1a JHe between 

x = 0 and x = a. Show that it is two-thirds of the 

rectangle of the limiting ordinate and of its abscissa. 

(o) Find the area of the positive portion of a sine 

curve and the mean ordinate. 

(4) Find the area of the positive portion of the 

curve y = svo?x, and find the mean ordinate. 

(5) Find the area included between the two branches 

of the curve y = al±xi from » = 0 to a?=l, also the 

area of the positive portion of the lower branch of 

the curve (see Fig. 30, p. 108). 

(6) Find the volume of a cone of radius of base r, 
and of height Ji. 

(7) Find the area of the curve y = x^ — log^x be¬ 
tween x = 0 and x=l. 

(8) Find the volume generated by the curve 

y=sj 1 -|- Q(?, as it revolves about the axis of x, be¬ 
tween x = 0 and x = 4. 
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(9) Find the volume generated by a sine curve 

revolving about the axis of x. Find also the area of 

its surface. 

(10) Find the area of the portion of the curve 

xy — a included between x = l and x = a. Find the 

mean ordinate between these limits. 

(11) Show that the quadratic mean of the function 

y = smx, between the limits of 0 and tt radians, is 

Find also the arithmetical mean of the same 

function between the same limits; and show that the 

form-factor is =1T1. 

(12) Find the arithmetical and quadratic means of 

the function x^ + 3a? -h 2, from a? = 0 to a? = o. 

(lo) Find the quadratic mean and the arithmetical 

mean of the function ^ sin a?+Aj sin 3a?. 

(14) A certain curve has the equation ?/= 3 •42e®'^'*. 

Find the area included between the curve and the 

axis of X, from the ordinate at a? = 2 to the ordinate 

at .t = 8. Find also the height of the mean ordinate 

of the curve between these points. 

(15) Show that the radius of a circle, the area of 

which is twice the area of a polar diagram, is equal 

to the quadratic mean of all the values of r for that 

polar diagram. 

(16) Find the volume generated by the curve 

+? Jxi\0 — x) rotating about the axis of x. 
y 6 

C.M.B. 
P 



CHAPTER XX. 

DODGES, PITFALLS, AND TEITJMPHS. 

Dodges. A great part of the labour of integrating 

things consists in licking them into some shape that 

can be integrated. The books—and by this is meant 

the serious books—on the Integral Calculus are full 

of plans and methods and dodges and artifices for 

this kind of work. The following are a few of 
them. 

Integration by Parts. This name is given to a 

dodge, the formula for which is 

^udx=ux—^xdti-\-0. 

It is useful in some cases that you can’t tackle 

directly, for it shows that if in any case ^xdu can 

be found, then ^ndx can also be found. The formula 

can be deduced as follows. From p. 38, we have, 

d(Mx)=udx+xdu, 

which may be written 

u{dx) = d{ux)—xdu, 

which by direct integration gives the above expression. 
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Examples. 

(1) Find • sin w dw. 

Write = w, and for sin w • dw write dx. We shall 

then have du = dw, while |sin i{7 • — cos «? = a:.'. 

Putting these into the formula, we get 

jw • sin div = %v{~cos tr) — | — cos wdw 

— —wcosiv+shiw+C, 

(2) Find ^xe^dx. 

Write 11 = X. e^dx = dv, 
then dll =• dx, v = e^, 

and ^xe^dx = xe?^ — ^e^dx (by the formula) 

= xe^—e* = e* (a? — 1 )■ + (7. 

(3) Try Jcos'-^dild. 

u=cos Q, cos 6 dQ = dv. 
Hence du = — sin 0 dO, v = sin 0, 

|cos^0 d6 = cos 6 sin 6 + Jsin^d dO 

2 cos 0 sin 0 

sin 20 , f ,, 

~+|(1-cos20)6?0 

J'(?0-jcos2 0i70. 

Hence 2|cos20(70=5^^+0 

|cos20t70 = ^^^+| + G. and 
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Write 

tlien 

(4) Find sin 

sin X dx = dv; 

du=2x dx, v= —cos a?, 

sin X dx = — cos x+2j'a? cos x dx. 

Now find Ja? cos a? (^a?, integrating by parts (as in 

Example 1 above): 

j*cosaJi^a; = a? sin a?+cos a;+(7. 

Hence 

ja;2 sin x dx =-x‘^qosx+ 2x sin a; + 2 cos a; + C' 

= 2 a?8ma!+cosa;(^l — 

(5) Find ^Jl—x^dx. 

Write n=z dx = dv\ 

X‘ 
■U. 

then du= — 
xdx 

Vl ■ a3^ 
(see Chap, IX., p. 67) 

x^dx 

and x = v\ so that 

|-\/l — x^dx = x\/l—x^ + ^ 

Here we may use a little dodge, for we can write 

fx/T^^?a;= 
J J tjl — x"^ J -v/1 — a;‘^ J V1 — x^ 

Adding these two last equations, we get rid of 
r 00 (^00 1 , 
-and we nave 

0\/l—X^ 
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Do you remember meeting 
dx 

: ? it is got by 
V1 — x^ 

differentiating y — axc,&m.x (see p. Ill); hence its in¬ 

tegral is arc sin x, and so 

vj2 

1 - x^dx = —— +1 arc sin x + G. 

You can try now some exercises by yourself; you 

will hnd some at the end of this chapter. 

Substitution. This is the same dodge as explained 

in Chap. IX., p. 67. Let us illustrate its application 

to integration by a few examples. 

(1) \ ij^+x dx. 

Let 3+a; = u, dx = du; 

replace ^w^du^^iG— %{^-\-xy. 

m I * Je*+e-* 
T , ». du „ 1 7 du. 
Let e*=M, = > 

so that 

du 

du 

Jm^+1 
f dx _ f du _ f du _ f 

\ ' u/ 

is the result of differentiating arc tan x. 
1+u^ 

Hence the integral is arc tan e*. 

f _f * 
x‘^ + 2x + i L" + 2a;+l + 2 J(;^+l)2+(;7^2' 
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+ d‘ 

IS 

1 

VI 

1 , u 
- - arc tan - • 
a a 

arc tan for the value 
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^»+l = M, dx = du\ 

then the integral becomes f-^ - but — 

the result of differentiating u 

Hence one has finally 

of the given integral. 

iormulcB of ReducUon are special forms applicable 

chiefly to binomial and trigonometrical expressions 

that have to be integrated, and have to be reduced 

into some form of which the integral is known. 

Rationalization, and Factorization of Denominator 
are dodges applicable in special cases, but they do not 

admit of any short or general explanation. Much 

practice is needed to become familiar with these pre¬ 
paratory processes. 

The following example shows how the process of 

splitting into partial fractions, which we learned in 

Chap. XIII., p. 122, can be made use of in integration. 

Take again J ^ if we split 
1 

2.^ + 3’ - 

into partial fractions, this becomes (see p. 282); 

—r f r dx 
2 V — 2 Ux+ i — . rj: 2 

=_1a?+l-v'-2 

Notice that the same integral can be expressed 
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sometimes in more than one way (which are equivalent 

to one another). 

Pitfalls. A beginner is liable to overlook certain 

points that a practised hand would avoid, such as 

the use of factors that are equivalent to either zero or 

infinity, and the occurrence of indeterminate quantities 

such as There is no golden rule that will meet 

every possible case. Nothing but practice and intelli¬ 

gent care will avail. An example of a pitfall which 

had to be circumvented arose in Chap. XVIII., p. 199, 

when we came to the problem of integrating x ^ dx. 

Triumphs. By triumphs must be understood the 

successes with which the calculus has been applied to 

the solution of problems otherwise intractable. Often 

in the consideration of physical relations one is able 

to build up an expression for the law governing the 

interaction of the parts or of the forces that govern 

them, such expression being naturally in the form of 

a differential equation, that is an equation containing 

differential coefficients with or without other algebraic 

quantities. And when such a differential equation 

has been found, one can get no further until it has 

been integrated. Generally it is much easier to state 

the appropriate differential equation than to solve it; 

the real trouble begins then only when one wants to 

integrate, unless indeed the equation is seen to possess 

some standard form of which the integral is known, 

and then the triumph is easy. The equation which 

results from integrating a differential equation is 
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called its “solution”; and it is quite astonishing 

how m many cases the solution looks as if it had no 

relation to the differential equation of which it is 

the_ integrated form. _ The solution often seems as 

different from the original expression as a butterfly 

does from the caterpillar that it was. Who would 

have supposed that such an innocent thing as 

dx a? — *2 

could blossom out into 

Oj-\-X 

a — x 
+ C? 

yet the latter is the solution of the former. 

As a last example, let us work out the above together. 
By partial fractions, 

1 1 
a^ — x^ 2(*(a + aj) ■ 2a(a — x)’ 

dx . dx 
dy= 

2a((*+a;)’^2a(a—a?)’ 

= ^ ~ logs(« -»')) 

2a loge 
Ch-jrX „ 
a — x'^ 

“solutiL™ solving it is called its 
H’orsvth “eve^v mathematicians would say, with Professor 
the valii’p of iZ differential equation is considered as solved when 

thZrdenonLnt vf expressed as a function of 

inteZah whZher functions, or of 
exprfsTed m ferr. f “^grations m the latter can or cannot be 
expressed in terms or functions already known.” 
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Not a very difficult metamorphosis ! 

There are whole treatises, such as Boole’s Differen- 

tial Equations, devoted to the subject of thus finding 

the “ solutions ” for different original forms. 

Exercises JUIX. (See p. 264 for Answers.) 

(1) Find (2) Find 1 lirlogea? dx. 

(3) Find |a;®logea? dx. (4) Find j'e® cos e^dx. 

(5) Find H cos (loge£c)(iiC. 
J OG 

(6) Find ^x^e^dx. 

(7) Find 
J X 

(8) Find 
f dx 

]xlog,,x 

(9) Find 
f 5x + l , 

]x^ + x-2'^^- 
(10) Find 

Ux‘^--Q)dx 

JF^ —7fl3 + 6 

(11) Find 
C hdx 

]x‘^ — a? 
(12) Find 

f4,x* dx 

J — 1 

/I o\ f dx Find 
f dx 

(io) Find 
]l—x^ )xsj a —ha? 



CHAPTER XXL 

FINDING SOLUTIONS. 

In this chapter we go to work finding solutions to 

some important differential equations, using for this 

purpose the processes shown in the preceding chapters. 

The beginner, who now knows how easy most of 

those processes are in themselves, will here begin to 

realize that integration is an art. As in all arts, so 

in this, facility can be acquired only by diligent and 

regular practice. He who would attain that facility 

must work out examples, and more examples, and yet 

more examples, such as are found abundantly in all 

the regular treatises on the Calculus. Our purpose 

here must be to afford the briefest introduction to 
serious 'work. 

Example 1. Find the solution of the differential 

equation 
dx 

Transposing we have 

b 
dx 

— ay. 
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Now the mere inspection of this relation tells us 

that we have got to do with a case in which ^ is 

proportional to y. If we think of the curve which 

will represent y b, function of x, it will be such 

that its slope at any point will be proportional to 

the ordinate at that point, and will be a negative 

slope if y is positive. So obviously the curve will 

be a die-away curve (p. 156), and the solution will 

contain e"* as a factor. But, without presuming on 

this bit of sagacity, let us go to work. 

As both y and dy occur in the equation and on 

opposite sides, we can do nothing until we get both 

y and dy to one side, and dx to the other. To do 

this, we must split our usually inseparable companions 

dy and dx from one another. 

dy a j 
= —-rdX. 

y b 
Having done the deed, we now can see that both 

sides have got into a shape that is integrable, because 

we recosrnize ^!M. or —dy, as a differential that we 
^ y y 

have met with (p. 147) when differentiating logarithms. 

So we may at once write down the instructions to 

integrate, 

and doing the two integrations, we have: 

\Qg,y= -|,* + log,(7, 
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where log,0 is the yet undetermined constant* of 

integration. Then, delogarizing, we get; 

y = Ge->, 

which IS the solution required. Now, this solution 

looks quite unlike the original difierential equation 

from which it was constructed; yet to an expert 

mathematician they both convey the same information 

as to the way in which y depends on x. 

Now, as to the O, its meaning depends on the 

initial value of y. For if we put x = 0 in order to 

see what value y then has, we find that this makes 

y^Ge-o- and as e-« = L we see that G is nothing else 

than the particular value! of y at starting. This we 

may call y^, and so write the solution as 
a 

y=y<f 

Example 2. 

Let us take as an example to solve 

"uLere p' is a constant. Again, inspecting the equation 

will suggest, (1) that somehow or other will come 

into the solution, and (2) that if at any part of the 

“ We may write down any form of constant as the “constant of 
integration, and the form log» G is adopted here by preference 

L Wathmf n"d T' “ ^^e, or L treated 
as IOj,aiithms, and it saves oomphoations afterward if the added 
constant be of the. same kind. 

■tCompare what was said about the “constant of integration” 
with reference to Tig. 48 on p. 187, and Pig. 51 on p. 190. ^ ’ 
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curve y becomes either a maximum or a minimum, so 

that ^ = 0, then y will have the value = ^, But let 
ax ^ 

us go to work as before, separating the differentials 

and trying to transform the thing into some in- 

tegrable shape. 

■ay, 

dy _a(g 

dy 

Q 
y-a 

a , 
= —^ax. 

0 

Now we have done our best to get nothing but y 

and dy on one side, and nothing but dx on the other. 

But is the result on the left side integrable ? 

It is of the same form as the result on p. 148; so, 

writing the instructions to integrate, we have; 

( dy _ _ 

d 
y-d 

a 
dx\ 

and, doing the integration, and adding the appropriate 

constant, 

whence ^ j 
ct 

and finally, ^ ~ a ’ 

which is the solution. 
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If the condition is laid down that ^ = 0 when x = 0 

we can find O; for then the exponential becomes = 1; 
and we have 

0 = ^+(7, 
a 

or (j^_9 
d 

Putting in this value, the solution becomes 

iAj 

But further, if x grows indefinitely, y will grow to 

a maximum; for when aj=oo, the exponential = 0, 

giving Substituting this, we get finally 

This result is also of importance in physical science. 

Example 3. 

Let ay-^h^=g 

We shall find this much less tractable than the 

preceding. First divide through by b. 

dy a q . c. 
^+^^=|sin2™«. 

Now, as it stands, the left side is not integrable. 

But it can be made so by the artifice—and this, is 
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where skill and practice suggest a plan of multiplying 
-t - . 

all the terms by e", giving us: 

. sin 2-n-nt, 
dt V 0 

which is the same as 

dtj jt , 
i' +*' 

=2g6*. sin ; 
dt h 

and this being a perfect differential may be integrated 

a 
thus:—since, if « = ?/£" , 

t dll_dy 
dt dt 

eo 
dif^') 

dt 

ye' ‘ = 2 
6j 

or 

e"' • sin ^irnt- dt-\-G> 

6“ •8m27rnt-dt + Ce 
y, a f a. 
— -f . /h- _1_ (~1c i> 

'’~h J 
.[A] 

The last term is obviously a term which will die 
out as t increases, and may be omitted. The trouble 
now comes in to find the integral that appears as a 
factor. To tackle this we resort to the device (see 
p. 226) of integration by parts, the general formula for 

which is ^wdv = w-^vdu. For this purpose write 

ii- 

dv = 8m.2irnt-dt. 

We shall then have 

^ 7< <* 
du = e^ X ydt, 

2'jni 
cos 211111. 
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Inserting these, the integral in question becomes. 

f -t . 
le*' ■sva.2Tvnt‘dt 

1 

2Tr« 

■e'> •cos27^^^U J—2;^cos ‘lirnt • -^dt 

I jt n ^ 
= — ji—e'’ cos27rM^+~r—Y 

2™ 2™6 

^ V'V'kJ ^ <» /t/l/ - M - I 

2™ 6 

' -« 
e*' • cos 2'jrnt • dt.[b] 

The last integral is still irreducible. To evade the 

difficulty, repeat the integration by parts of the left 

side, but treating it in the reverse way by writing: 

1 M = sin 2-wnt; 
A " 

\dv = e»* ■ dt', 

whence 
du = 2™ • cos ^irnt • dt; 

Inserting these, we get 

C 
e" •sm.2-Knt-dt 

h ^ ^TTflb {ft n . r , 
= -•€'' -Sin 2Trnt-1 e * -cos ^irnt • dt.[c] 

Cl Oj J 

Noting that the final intractable integral in [c] is 

the same as that in [b], we may eliminate it, by 

multiplying [b] by -, and multiplying [c] by 
Cl 

, and adding them. 
2-Knb' 
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The result, when cleared down, is : 

• sin 2irnt • dt 

It {ah' sin 'lirnt — 'iTridf • cos 27r«0 (a 
= 6'’ 

a^-i-4<TrVb^ 

Inserting this value in [a], we get 

• sin 27rnt — ^irnh • cos SttmO 

1- 
.[D] 

y=9 
|a • sir 

7- 

To simplify still further, let us imagine an angle (p 

2-Knb 
a 

27rnb 

such that tan (p = 

Then sin cp = 
+ 4!'7rVb^ ’ 

1 a 
and coa<p = -/ ^ 

^ s/cd^^Vb^ 

Substituting these, we get: 

cos 0 • sin 2'7rnt — sin 0 • cos 2^1^ 

which may be written 

sin (2Trnt—<p) 

y^yjd^+4>TrVb^’ 

which is the solution desired. 

This is indeed none other than the equation of an 

alternating electric current, where g represents the 

amplitude of the electromotive force, w the frequency, 

a the resistance, b the coefficient of self-induction of 

the circuit, and <p is an angle of lag. 

O.M.H. Q 
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Example 4. 

Suppose that Mdx + Ndy = (i. 

We could integrate this expression directly, if M 
were a function of x only, and N a function of y 
only ; but, if both if and N are functions that depend 

on both X and y, how are we to integrate it ? Is it 

itself an exact differential ? That is: have if and N 
each been formed by partial differentiation from some 

common function U, or not ? If they have, then 

'dU 

.'dy 

And if such a common function exists, then 

dy '' dx 

is an exact differential (compare p. 175). 

Now the test of the matter is this. If the expression 

is an exact differential, it must be true that 

for then 

dM_^d]Sr_ 
dy dx ’ 

d{dU) djdU) 
dydx’ dxd/y 

which is necessarily true. 

Take as an illustration the equation 

{l + 'i^xy)dx+x^dy = 0, 
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Is this an exact differential or not? 

test. 
! d{l + ^xy) 

d{x^) 
dx 

= ^x, 

= 2x, 

Apply the 

which do not agree. Therefore, it is not an exact 

differential, and the two functions l-\-^xy and oc‘‘ 

have not come from a common original function. 

It is possible in such cases to discover, however, an 

integrating factor, that is to say, a factor such that 

if both are multiplied by this factor, the expression 

will become an exact differential. There is no one 

rule for discovering such an integrating factor; but 

experience will usually suggest one. In the present 

instance 2a? will act as such. Multiplying by 2a?, we 

{2x+Qx^y)dx+2a^dy = Q. 

Now apply the test to this. 

)d{2x+Qx‘^y) 

dy 

d{2x^) 
dx 

= 6a?^, 

= 6a?^ 

which agrees. Hence this is an exact differential, and 

may be integrated. Now, if to = 2a^y, 

dw=6a?®«/ dx+2a? dy. 

Hence ' |%x?y dx+^2x^dy = w=2a?y; 

so that we get ?7= a?^ + 2x^y + C. 
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r +^^V = = 0. Example 5. Let 
CvC 

In this case we have a differential equation of the 

second degree, in which y appears in the form of 

a second differential coefficient, as well as in person. 

Transposing, we have —'ify. 
CvZ 

It appears from this that we have to do with a 

function such that its second differential coefficient is- 

proportional to itself, but with reversed sign. In 

Chapter XV. we found that there was such a func¬ 

tion—namely, the sine (or the cosine also) which 

possessed this property. So, without further ado, 

we may infer that the solution will be of the form 

*/ = A sin {pt + q\ However, let us go to work. 

Multiply both sides of the original equation by 2 ^ 

and integrate, giving us 2 ^ J-|-2»2y # = 0^ and, as 

^dhjdy 
df dt dt ' +n%y^-C^) = 0, 

0 being a constant. Then, taking the square roots, 

—n\/y^ — C^ and — = n‘dt 

But it can be shown that (see p. 171) 

j d{&tcsni'^ 

whence, passing from angles to sines, 

arc8in^.,=ri(«+(7i and y= (7sin(n«+(7i), 
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whereUi is a constantangle that comes in by integration. 

Or, preferably, this may be written 

y = A sin nt + B cos nt, which is the solution. 

Example 6. —w^|/ = 0. 

Here we have obviously to deal with a function y 
which is such that its second differential coefficient is 

proportional to itself. The only function we know 

that has this property is the exponential function 

(see p. 143), and we may be certain therefore that the 

solution of the equation will be of that form. 

Proceeding as before, by multiplying through by 

’ ^ and integrating, we get 2 ^ - 
dx' 

and, as 2 

g, V. 

dx^ dx 

dhf dy _ \dx) 
dx^- dx dx 

-njy- 

where c is a constant, and 

dx) 
■ + (?) = 0, 

dji_ 
dx 

-c" = 0. 

dy 
= = n dx. 

Now, if 

dw _ 
du 

»Jy^+(? 

w = loge (2/++(?) = loge %(,__ 
y__y + \ly‘^-?(? 

Jy‘^+c^ 

du .. 

Jy^+( 

and 
du: 
dy Jy'^+?‘ 

Hence, integrating, this gives us 

logs {y+>Jy^ + ?) = nx+log^ C, 

y+\/y^-\-(?) = Ge'''^. . 

Now {y+s/y^ + ?‘)x{ — y+sJy^+(?) = ? 
__ (3. 

whence —y + \/y^+(?= 

.(1) 

O 
.(2) 
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Subtracting (2) from (1) and dividing by 2, we 

then have i 1 2 

which is more conveniently written 

y = Ae^^ + Be-^^- 

Or, the solution, which at first sight does not look 

as if it had anything to do with the original equation, 

shows that y consists of tv/o terms, one of which 

grows logarithmically as x increases, and of a second 

term which dies away as x increases. 

Example 7. 

Examination of this expression will show that, if 

& = 0, it has the form of Example 1, the solution of 

which was a negative exponential. On the other 

hand, if a = 0, its form becomes the same as that of 

Example 6, the solution of which is the sum of a 

positive and a negative exponential. It is therefore 

not very surprising to find that the solution of the 

present example is 

where m = | and » = V5-| 

The steps by which this solution is reached are not 

given here j they may be found in advanced treatises. 
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Example 8. 

df~ dx^' 

It was seen (p. 177) that this equation was derived 

from the original 

y = F{x + at) +/(» - a,t), 

where F’ and /were any arbitrary functions of t. 
Another way of dealing with it is to transform 

by a change of variables into 

d'^y 

du • dv 
= 0, 

it 

where u=^x + at, and v = x — at, leading to the same 

general solution. If we consider a case in which 

P vanishes, then we have simply 

'y=/{x—at); 

and this merely states that, at the time ^ = 0, y is a 

particular function of x, and may be looked upon as 

denoting that the curve of the relation of y io x has 

a particular shape. Then any change in the value 

of ^ is equivalent simply to an alteration in the origin 

from which x is reckoned. I hat is to say, it indicates 

that, the form of the function being conserved, it is 

propagated along the X direction with a uniform 

velocity a\ so that whatever the value of the 

ordinate y at any particular time % at any particular- 

point same value of y will appear at the sub¬ 

sequent time at a point further along, the abscissa 

of which is Xa-\-a{t-^-Q. In this case the simplified 
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equation represents the propagation of a wave (of any 

form) at a uniform speed along the x direction. 

If the differential equation had been written 

dt‘^ dx? 

the solution would have been the same, but the 

velocity of propagation would have had the value 

a = 

You have now been personally conducted over the 

li'ontiers into the enchanted land. And in order that 

you may have a handy reference to the principal 

results, the author, in bidding you farewell, begs to 

present you with a passport in the shape of a con¬ 

venient collection of standard forms (see pp. 252, 253). 

In the middle column are set down a number of the 

functions which most commonly occur. The results 

of differentiating them are set down on the left; the 

results of integrating them are set down on the right. 

May you find them useful! 



EPILOGUE AND APOLOGUE. 

It may be confidently assumed that when this 

tractate “Calculus made Easy” falls into the hands 

of the professional mathematicians, they will (if not 

too lazy) rise up as one man, and damn it as being a 

thoroughly bad book. Of that there can be, from 

their point of view, no possible manner of doubt 

whatever. It commits several most grievous and 

deplorable errors. 

First, it shows how ridiculously easy most of the 

operations of the calculus really are. 

Secondly, it gives away so many trade secrets. By 

showing you that what one fool can do, other fools 

can do also, it lets you see that these mathematical 

swells, who pride themselves on having mastered such 

an awfully difficult subject as the calculus, have no 

such great reason to be puffed up. They like you to 

think how terribly difficult it is, and don't want that 

superstition to be rudely dissipated. 

Thirdly, among the dreadful things they will say 

about “ So Easy ” is this : that there is an utter failure 

on the part of the author to demonstrate with rigid 
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and satisfactory completeness the validity of sundry 

methods which he has presented in simple fashion, 

and has even dared to use in solving problems 1 But 

why should he not ? You don’t forbid the use of 

a watch to every person who does not know how to 

make one ? You don’t object to the musician playing 

on a violin that he has not himself constructed. You 

don’t teach the rules of syntax to children until they 

have already become fluent in the use of speech. It 

would be equally absurd to require general rigid 

demonstrations to be expounded to beginners in the 

calculus. 

One other thing will the professed mathematicians 

say about this thoroughly bad and vicious book ; that 

the reason why it is so easy is because the author has 

left out all the things that are really difficult. And 

the ghastly fact about this accusation is that—it 

is true! That is, indeed, why the book has been 

written—written for the legion of innocents who have 

hitherto been deterred from acquiring the elements of 

the calculus by the stupid way in which its teaching 

is almost always presented. Any subject can be made 

repulsive by presenting it bristling with difficulties. 

The aim of this book is to enable beginners to learn 

its language, to acquire familiarity with its endearing 

simplicities, and to grasp its powerful methods of 

solving problems, without being compelled- to toil 

through the intricate out-of-the-way (and mostly 

irrelevant) mathematical gymnastics so dear to the 

unpractical mathematician. 
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There are amongst young engineers a number on 

whose ears the adage that what one fool can do, 

another can, may fall with a familiar sound. They 

are earnestly requested not to give the author 

away, nor to tell the mathematicians what a fool 

he really is. 
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(1) 

(4) 

/_v di'lt 8 _lf5 
<’> E-“6® ^ 

(,) 
ax q 

Exercises I. (p. 25.) 

(2) 
dy 
dx -2* ""• 

/.V dz \ ^ 

(3) ^=2aic(2‘‘-i'. 

//?\ ^ — 8 

(8) ^ = 2ax“^'. 

(10) dy 
dx~ 

Exercises II. (p. 33.) 

(1) 
dy 
dx 

-Zax^. 

(4) ^ = \pix i. (5) 
dx 2 ^ ' dz c 

(7) ^' = 0-000012 x/„. 
(W “ 

(3) 

(6) 

(8) dC 
'> 0'98, 3’00 and 7‘47 candle power per volt 

“ respectively. 

(9) dn _ jg T dn 
dD LD^ W dL 

dn^_ JgT dn 
dcT 2DLy 7rcr-<’ df 

DL? ' TTO" 
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Rate of change of P when t varies 

Rate of change of P when D varies 

(11) Stt, 27rr, irl, %irrh, Sttv, 

D 

t 
dD 0'000012Zj 

^ dT~ TV ■ 

Exercises III. (p. 46.) 

(1) (a) l+£c+^V|*+g+.... (5) 2ax+5. (c) 2£c+2a. 

{d) Zx^+&ax + Zd^, 

(4) 14110.x'* - 65404*3 _ 2244,^2 + 8102.* +1379. 

(5) ^ = 2i/ + 8. (6) 185-9022654.*2+154-36334. 

(7) ® . 
^ (3*+ 2)2 

(8) 

/Q\ -bo 
^ (oxYdf^ 

(10) 

(11) b + 2ct. 

6.*‘‘ + 6x3 + 9,x2 

{l+X + ^X^Y’ 
anx~’^~^ + hnx"-~^ + 2%*“^ 

(x^'‘+hf ■ 

(12) J?o(« + 25^), R(i r,A. ^ A Ro{a+^ht) _ R3(fj_,_2bf) 

^-^sJtP {l+at+hPf ~R, 
(13) l-4340(0'000014i-0-000828), 

dK _ o + kl 

di T? 
(14) ^=6 + $, 

di V 

0-00117, - 0-00107, -0-00097. 

Exercises IV. (p. 51.) 

(1) 17 + 24*: 24. 

X 

(2) 
*3+2a*-a 

ix+af 

(3) 1+* + ^ + -^^; 1+£B+ 
1x2 1x2x3 1x2 

(4) {Exercises III.) ; 

(c) 2, 0. 

2*^ w Qd 

(d) 6.* + 6«, 6. 

2CT(ra+l) 
(.* + af' 

(b) - 2a, 0. 
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(2) -6,0. (3)2,0. 

(4) 56440a;3-196212a;2_4488a; + 8192. 

169320x2 - 392424X - 4488. 

(5) 2, 0. (6) 371-80453,x, 371-80453. 

30 270 

^ ’ (3x + 2)3’ (3x + 2)“‘ 

{ 'Examples, p. 41): 

(1) gx. 
6a 
W 

Zas/h Sb\'a \SbiJa Za\lh 
' 2\/x ’ x’ 

1-056 2-3232 16 

(4) 810i5« - 648^3 + 479-52^2 -139-9686 + 26-64. 

324062-194462 + 959-046-139-968. 

(6) 12X + 2, 12. 

/h,N 3/1 1 \ 

(6) 6,x2-9x, 12x-9. 

1/15_1\ 

'4V(7p VP/ 

3/jL_JL .JL) 
8 WP \/p/ 8 WP'^n/P/ 

Exercises V. (p. 64.) 

(2) 64 ; 147-2 ; and 0-32 feet per second. 

(3) x = a-gt\ x=—g. (4) 45-l feet per second. 

(5) 12-4 feet per second per second. Yes. 

(6) Angular velocity = ll-2 radians per second; angular ac 

oeleration = 9-6 radians per second per second. 

(7) -(; = 20-462-10-8. a = 40-86. 172-8 in./sec., 122-4 in./sec2. 

1 __1 

Of 
(9) - = 0-8-^-^, 

(10) n=2, n=ll. 

2462-32 

~ (4 + 162)2^’ 
0-7926 and 0-00211. 
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(1) X 

Vx^+l 

Exercises VI. (p. 73.) 

tAs‘ «- '2.\l{a+xf 

(4) 

(6) 

ax 

\/(a - oFf 
ijx^ [|.x (x^+g)" (x** + g)] 

(x‘‘+a)'^(x^4-a)^ 

(8) 

(5) -T7=r=i- 

2a(x-a) 

^ ’ ~Fc + a)^ ■ 

(9) -1-=^ 

(1) 
dw 

dx 

(2) 
dv 

dx 

(3) 
du 

dx 

Exercises VII. (p. 75.) 

3x’^(3 + 3x^) 

27 (|,x^ 4- jx°)^’ 

_12x_ 

\/l + vi+3x2 (\/3 + 4\/l+\/2 + 3x2)^' 

x2(\/3+x2) 

VR^-' 

Exercises VIII. (p. 91.) 
(2) 1-44. 

(4) ^ = 3x2 + 3 • and the numerical values are ; 

(5) ±\/2. 

(6) 
dy^ 
dx 

4 X 

9y 

3, 3|, 6, and 15. 

Slope is zero where ,x = 0 ; and is 

where x = l. 

(7) m=4, n= -3. 

(8) Intersections at x = l, x=-3. Angles 153° 26', 2° 28'. 

(9) Intersection at ,x = 3'57, y = Z'50. Angle 16° 16'. 

(10) x = i y = 2J, 6=-f. 

C.M.E. R 
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Exercises IX. (p. 109.) 

(1) Min. : x = 0, y = 0; max. ; x= -S, y= -4. 

(2) x = a. (4) 25\/3 square inches. 

' dx (8- xf ’ ' ’ ^ 

(6) Max. for 33 = -1 ; min. for x = l. 

(7) Join the middle points of the four sides. 

(8) r=ffR, 7'=yi no max. 

(9) r=RA/l 
R 

(11) r= 

i’ '“"'Vi’ = 
■a 

RVs .INR 

(10) At the rate of - square feet per second. 

(12) M=y^ 

Exercises X. (p. 118.) 

(1) Max. : x= -2'19, 2/ = 24'19 ; mm. ; x= l’52, y= -1'38. 

(3) (a) One maximum and two minima. 

(6) One maximum. (.x = 0 • other points unreal.) 

(4) Min. : a3=l'71, y^Q'lA. (5) Max; a3=-'5. y=4. 

(6) Max. : x = 1-414, y = 1-7675. 

Min.: x=-1-414, y=:V7615. 

(7) Max. ; x= -3-565, y = 2-\2. 

Min. ; .x=+3-565, y = 7-88. 

(8) 0-4A, 0-6A. (9) x=\l-‘ 
’ c 

(10) Speed 8-66 nautical miles per hour. Time takenll5-47hours. 

Minimum cost £112. 12,?. 
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(n) Max. and min. for a3 = 7-5, ^=±5-414. - (See example 
no. 10, p. 72.) 

(12) Min. ; x = ^, y = 0-25 ; max. ; a;= - J, y = 1-408. 

Exercises XI. (p. 130.) 

/.X 19_22 
^ 13(2.x- + 3) 13(3x-2y 

(1)—+ -^- 
^ ^x-3 x + 4 

' '' x-4: x-3' ’ 13(2.x- + 3) 13(3x-2y 

(gx _5_ 
'''^a;-2 £c-3 x-4 

/7^ jL _ 
^ ' 6(x-l) 15(x4-2)"^ro(x-3y 

(O. 7 I _71_5___ 
'■ ^ 9(3x+l) ■ 63(3x-2) 7(2x + iy 

/q\  1  , 2x + l 2 l-2,x 

3(x-l)'*'3(.xy+x + iy ^ '*'^3(x + l)'^3(.x2~.x+iy 

' x + 1 xHx + l ' x-1 x-2'^(x-2)‘‘‘' 

1131 L_1 I_1 
^ ^4(x-l) 4(x + l) 2(x + l)2' 

(14) _i_^_L_. 
9(.x-l) 9(x + 2) 3(x + 2)2 

115) _x — 1_1_ 
x + 2 x^+x+1 {x^ + x + Vf 

110) 5 32 36 
^ x + 4 (x+4)2 (.x + 4)^' 

117) _7_ 55 73 
'■ ^ 9(.3x-2)2^9(3x-2)3 - 9(,3x-2)‘’ 

l^g) 1_I_1_ X 
' 6(,x-2)'^3(x-2)2~6(xH2x + 4)‘ 

C.M.E, 
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Exercises XII. (p. 163.) 

(1) a6(£‘“+e^'“). (2) 2ai+?. (3) log^n. 

(5) (6) 
cc 

X 

6£ce-«='-5(3x2+l)e-«* 

(11) (1^) +05“ logett). 

(14) Min. : y = 0'7 for x = 0'694. 

(15) 1±A. (16) ^(log.ax)2 

Exercises XIII. (p. 162.) 

(1) Let ^=x (.. t = 8x), and use the Table on page 159. 

(2) r=34-627; 159'46 minutes. 

(3) Take 2i = x ; and use the Table on page 159. 

(5) (a) x*(l+log6x); (6) 2x(e*)*; (o) xx*(l+logcX). 

(6) 0T4 second. (7) (a) T642 ; (b) 15'58. 

(8) p = 0-00037, 31”*i. 

(9) i is 63'4 % of id, 220 kilometres. 

(10) 0-133, 0T45,0T55, mean 0-144 j -10-2%, -0-9%, +77-2%. 

(11) Min. for x=-- (12) Max. for x = 6. 

(13) Min. for .x=logsa. 
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Exercises XIV. (p. 173.) 

(1) (i)g = Acos(0-|); 

(ii) ^ = 2 sin 0COS 0 = sin 20 and ^ = 2cos20; 
^ ' dO do 

(iii) ^ = 3sin20cos0 and ^ = 3 cos 30. 
^ ' dO dO 

(2) 0=45° or j radians. (3) - w sm 2x71^. 

(4) a* logs a cos a*. (5) =cotan as. 

(6) 18-2 cos (a;+ 26°). 

(7) The slope is ^ = 100 cos (0-15°), which is a maximum 

when (0 -15°)=O, or 0=15°; the value of the slope 

being then =100. When 0 = 75° the slope is 

100 cos (75° - 15°) = 100 cos 60° = 100 x i = 50. 

(8) cos 0sin 20 + 2cos20sin 0 = 2sm 0(cos2 0 + cos20) 
= 2 sin 0 (3 cos^ 0-1). 

(9) amw0"^* tan“'‘'(0'‘)seo^0”, 

(10) e*(sin2a; + sin 2x); €*(sin^a3 + 2 sin 2a3 + 2 cos 2x). 

... dll ah .... a - 
« 3i=(a)+F)- 

..... Jl^ ah 

9o°^(PAx2y 

(12) (i) 
dy 

= sec X tan x ; 
ax 

/-•\ % 
'■‘>35-- 

(Iv) S- 

si=iHb 

dx xs/x^-l 
(v) 

(7-j/_\/3secx(3 sec^x- 1) 

dx' 

(13) ^ = 4'6(20 + 3)'»cos(20 + 3)2». 



262 ANSWERS 

(14) ^ = 36l^ + 3cos(0 + 3)-loge3(cos0x3“”'®+30). 

(16) 9=cot d ; 6= ±0'86 ; is max. for +0, mm. for —0. 

Exercises XV. (p. 180.) 

(1) a?- Qx^y- 2?/2; -1 - - ixy. 

(2) “ixyz + y^-z+zhj + ^xy^z‘‘; 
^xyz+x^z+xz'^+2x‘‘yz'^; 
2xyz + x^y+xy^+2x^y^z. 

(3) -{(x-a)+(j/-b) + (g-o)}=^^+^+^)~^°^+^ + g). 1 
T Tv 

(4) dy=vu'’-^du+u'’\og^udv. 

(5) dy = Zsmvu^dii+v?cosv dv, 
dy = us\n a3“-' cos .* dx + (sin a;)“ log, sin £c du, 

- logeM dv. 

(7) Minimum for x = y= -|. 

(8) (a) Length 2 feet, width = depth = 1 foot, yol. = 2 cubic 
feet. 

2 
(&) Radius =-feet = 7'46 in., length = 2 feet, vol. = 2'54. 

(9) All three parts equal ; the product is maximum. 

(10) Minimum for .a; = j/ = l. 

(11) Min.; x=^ and y = 2. 

(12) Angle at apex = 90°; equal sides = length = ^2^. 

Exercises XVI. (p. 190.) 

(1) l-i. (2) 0-6344. (3) 0-2624. 

i'^) {a) y = lx^+C i {b) y = smx + C. 

(5) y^x^ + Zx+C. 
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Exercises XVII. (p. 205.) 

(1) 

(4) Ix^+ax+C. 

(6) x*+x^+x^+x+C. 

(2) -^+C'. 
/va% 

(3) 

(5) -2a:“i + a 

/h,\ ax^ . hx^ , ca;'* . „ 
(7) ^+ir+i6 

division. Therefore the answer 
tXj~TCt 

x^ 
is -ax+(a‘‘+a)\oge{x+a)+C. 

/V.4 97 
(9) ^ + 3a;3 + ^xH27.x+a 

(11) a?('2x^+lx^) + C. 

6 ^ sin %aQ , ^ 
2+“4^ + ^- 

(-15') 0 sin 9,a9 „ 
^ 2 4a 

(17) log(l+a;) + C'. 

(See pages 199 and 201.) 

(10) ^+^-^x‘‘-'2ax+C. 

(12) -'^cosO-19+C. 

(14) l-Slf^+C. 

(16) JeS. 

(18) -logAl-a;)+C'. 

Exercises XVIII. (p. 224.) 

(1) Area = 60 ; mean ordinate = 10. 

(2) Area=§ of ax2a\/a. 

2 
(3) Area = 2; mean ordinate = — = 0-637. 

TT 
(4) Area = 1-57 ; mean ordinate = 0-5. 

(5) 0-572, 0-0476. (6) Volume=7rr2|. 

(7) 1-25. (8) 79-4. 

(9) Volume = 4-9348 ; area of surface = 12-57 (from 0 to ir). 

(10) alog^a, -^log^a. 

(12) Arithmetical mean = 9-5 ; quadratic mean = 10-85. 
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(13) Quadratic mean —. arithmetical mean = 0. 

The first involves a somewhat difficult integral, and may be 
stated thus ; By definition the quadratic mean will be 

4if:u 1 sin £c + A 3 sin Zx)^ dx. 

Now the integration indicated by 

j(Aj^ Sin^x + 2A1A 3 sin X* sin 3x + A/ sin^3x)dx 

is more readily obtained if for sin^x we write 

1 - cos 2x 
2 

For 2 sin x sin Sic we write cos 2£C - cos 4x ; and, for sin^3x, 

1 - cos 6x 
2 

Making these substitutions, and integrating, we get (see 
p. 202) 

sin2a;\ < . /sin 2.x sin4x\ A^l sin6x 
-- 

At the lower limit the substitution of 0 for x causes all 
this to vanish, whilst at the upper limit the substitu¬ 
tion of 27r for x gives Ai^tt + A/tt. And hence the 
answer follows. 

(14) Area is 62'6 square units. Mean ordinate is 10 42. 

(16) 436'3. (This solid is pear shaped.) 

Exercises XIX. 

(1) 
• _-| I /-'f 

Sin 1- + C. 
a 

(p. 233.) 

(2) ^{\og^x-\)+C. 

(3) + 

(5) sin (log., x)+ (7. 

(4) sin 6*-PC'. 

(6) e%x2-2x4-2)-PC. 
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(7) 
Ct' “T i 

(8) log^(log^a;) + C'. 

(9) 21ogj(a3-l) + 3logj(a5 + 2)+C'. 

(10) 1 log Aa; -1) + i 1 og^ (£c - 2)+A log^ (as+3) + O'. 

/-i 1 \ 5 1 ai (X 

^ ^ 2a. 
C. (12) log, 

03^-1 

X^+1 
+ C. 

(13) jloge|^^^ + |arctanx + C'. 

(14) -^log,-^-. 
va a3\/a 

let 4 — = 
a 

'■V-U. ■) 

,.Let ——v; then, in the result, 
‘ a; ’ 

You had better differentiate now the answer and work 

back to the given expression as a cheek. 

Every earnest student is exhorted to manufacture more 

examples for himself at every stage, so as to test his powers. 

Y^hen integrating he can always test his answer by differ¬ 

entiating it, to see whether he gets back the expression from 

which he started. 

There are lots of books which give examples for practice. 

It will suffice here to name two : R. G. Blaine's The Calculus 

and its Applications, and F. M. Saxelby’s A Course in Practical 

Mathematics. 
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